問題は、三角関数の表の空欄(1)~(9)に当てはまる値を答える問題です。表は角度$\theta$が30°, 45°, 60°のときの、sin$\theta$, cos$\theta$, tan$\theta$の値をまとめたものです。

幾何学三角関数三角比角度sincostan
2025/8/14

1. 問題の内容

問題は、三角関数の表の空欄(1)~(9)に当てはまる値を答える問題です。表は角度θ\thetaが30°, 45°, 60°のときの、sinθ\theta, cosθ\theta, tanθ\thetaの値をまとめたものです。

2. 解き方の手順

三角関数の定義と、よく知られた角度における三角関数の値を思い出す必要があります。
* sin 30° = 1/2
* sin 45° = 2\sqrt{2}/2
* sin 60° = 3\sqrt{3}/2
* cos 30° = 3\sqrt{3}/2
* cos 45° = 2\sqrt{2}/2
* cos 60° = 1/2
* tan 30° = 1/3\sqrt{3} = 3\sqrt{3}/3
* tan 45° = 1
* tan 60° = 3\sqrt{3}

3. 最終的な答え

(1) 1/2
(2) 2\sqrt{2}/2
(3) 3\sqrt{3}/2
(4) 3\sqrt{3}/2
(5) 2\sqrt{2}/2
(6) 1/2
(7) 3\sqrt{3}/3
(8) 1
(9) 3\sqrt{3}

「幾何学」の関連問題

一辺の長さが3の立方体ABCD-EFGHにおいて、辺AD上に点I, 辺DC上に点JをID = JD = 2となるようにとる。 (1) 三角形IHJの面積Sを求める。 (2) Dから三角形IHJに垂線D...

空間図形立方体面積三平方の定理体積
2025/8/14

正六角形ABCDEFにおいて、$\overrightarrow{AB} = \vec{a}$、$\overrightarrow{AF} = \vec{b}$とするとき、以下のベクトルを$\vec{a}...

ベクトル正六角形ベクトル表示
2025/8/14

直方体ABCD-EFGHにおいて、AB=6cm, AD=5cm, AE=7cmである。このとき、三角錐CGHFの体積を求める。

空間図形体積直方体三角錐
2025/8/14

線分ABを直径とする半円と線分ACを直径とする半円が組み合わさった図において、影をつけた部分の面積を求める問題です。ただし、AB = 10 cm, AC = 4 cmであり、円周率は $\pi$ とし...

面積半円
2025/8/14

直角三角形ABCがあり、AB = 4cm, BC = 6cm, ∠B = 90°である。点PはAを出発し、毎秒1cmの速さでBを通ってCまで移動する。 (1) Aを出発して2秒後の△APCの面積を求め...

三角形面積移動方程式図形
2025/8/14

直線 $x+4y = 20$ (①) と $y = ax - 5$ ($a>0$) (②) がある。 点Aは直線①とy軸との交点、点Bは直線②とy軸との交点、点C(8,3)は直線①と②の交点。 点K(...

一次関数直線交点面積座標平面
2025/8/14

問題は、与えられた三角形ABCにおいて、指定された辺の長さを求める問題です。 (1) $a=5$, $A=30^\circ$, $B=135^\circ$のとき、$b$を求めます。 (2) $b=\s...

正弦定理三角形角度辺の長さ
2025/8/14

問題は、与えられた三角形ABCについて、外接円の半径$R$を求める問題です。具体的には、以下の3つのケースが与えられています。 (1) $a=3$, $A=150^\circ$ (2) $b=\sqr...

三角形外接円正弦定理三角比
2025/8/14

$0^\circ \le \theta \le 180^\circ$ で $\tan \theta = -2$ のとき、以下の値を求めよ。 (1) $\sin \theta$ (2) $\cos \t...

三角比三角関数角度tansincos
2025/8/14

$0^\circ \le \theta \le 180^\circ$のとき、$\cos\theta = -\frac{1}{5}$が与えられている。このとき、$\sin\theta$と$\tan\th...

三角関数三角比相互関係sincostan
2025/8/14