与えられた4つの対数方程式を解きます。 (1) $\log_3(x-2) = 2$ (2) $\log_x 3 = 2$ (3) $\log_2(x+1) + \log_2 x = 1$ (4) $\log_4(x^2 - 3x - 10) = \log_4(2x-4)$
2025/8/14
はい、承知いたしました。対数方程式の問題ですね。解いていきましょう。
1. 問題の内容
与えられた4つの対数方程式を解きます。
(1)
(2)
(3)
(4)
2. 解き方の手順
(1)
対数の定義から、となります。
真数条件より、 である必要があるので、。 はこの条件を満たします。
(2)
対数の定義から、となります。
底の条件より、 かつ である必要があるので、 が解となります。
(3)
対数の性質から、となります。
対数の定義から、となります。
真数条件より、 かつ である必要があるので、。よって、 が解となります。
(4)
真数が等しいので、となります。
真数条件より、 かつ である必要があります。
より
より よって または 。
とあわせて、
したがって、 が解となります。
3. 最終的な答え
(1)
(2)
(3)
(4)