以下の連立方程式を解いて、$x$ と $y$ の値を求めます。 $ \begin{cases} 3x - y = 4 & \cdots ① \\ 3x + 4y = 14 & \cdots ② \end{cases} $

代数学連立方程式加減法一次方程式
2025/8/14

1. 問題の内容

以下の連立方程式を解いて、xxyy の値を求めます。
\begin{cases}
3x - y = 4 & \cdots ① \\
3x + 4y = 14 & \cdots ②
\end{cases}

2. 解き方の手順

連立方程式を解くために、加減法を用います。
②式から①式を引きます。
(3x+4y)(3xy)=144(3x + 4y) - (3x - y) = 14 - 4
3x+4y3x+y=103x + 4y - 3x + y = 10
5y=105y = 10
y=105y = \frac{10}{5}
y=2y = 2
次に、y=2y = 2 を①式に代入して、xx の値を求めます。
3x2=43x - 2 = 4
3x=4+23x = 4 + 2
3x=63x = 6
x=63x = \frac{6}{3}
x=2x = 2

3. 最終的な答え

x=2x = 2
y=2y = 2

「代数学」の関連問題

画像に示された2直線 $l$ と $m$ の交点の座標を求める問題です。

連立方程式一次関数交点座標
2025/8/14

2点 $(-4, -2)$, $(8, 7)$ を通る1次関数の式 $y = \frac{サ}{シ}x + ス$ を求める。

1次関数グラフ傾き切片
2025/8/14

2点 $(2, 7)$ と $(3, 0)$ を通る一次関数の式 $y = -クx + ケコ$ における $ク$ と $ケコ$ の値を求める問題です。

一次関数連立方程式座標傾き切片
2025/8/14

点$(-2, -2)$を通り、直線$y = 4x + 3$に平行な一次関数の式を求めます。求める一次関数の式は$y = カx + キ$の形式で表されます。

一次関数傾き平行点の座標
2025/8/14

与えられた連立方程式 $ \begin{cases} x = 2y + 4 & \cdots ① \\ 2x + 3y = 15 & \cdots ② \end{cases} $ を解き、$x$と$...

連立方程式一次方程式代入法
2025/8/14

以下の連立方程式を解き、$x$ と $y$ の値を求めます。 $\begin{cases} 3x - 2y = 2 & \cdots ① \\ 4x + 3y = -20 & \cdots ② \e...

連立方程式代入法方程式
2025/8/14

与えられた連立一次方程式 $ \begin{cases} 2x + 3y = 8 & \cdots ① \\ x + 4y = 9 & \cdots ② \end{cases} $ を解き、$x$ と...

連立方程式一次方程式代入法解法
2025/8/14

以下の連立方程式を解き、$x$と$y$の値を求める問題です。 $ \begin{cases} 2x - y = 5 \\ x + y = 4 \end{cases} $

連立方程式加減法一次方程式
2025/8/14

与えられた連立方程式 $ \begin{cases} 4x - y = 5 \\ x + y = 5 \end{cases} $ の解として適切なものを、選択肢の中から選ぶ問題です。

連立方程式加減法代入法方程式の解
2025/8/14

問題文は、2桁の自然数の十の位の数字を $x$ 、一の位の数字を $y$ としたときに、与えられた条件に基づいていくつかの空欄を埋める問題です。選択肢の中から適切な数式や数字を選びます。

数式文字式整数の性質
2025/8/14