不定積分 $\int (-7x^2) dx$ を求める問題です。

解析学積分不定積分公式
2025/4/6

1. 問題の内容

不定積分 (7x2)dx\int (-7x^2) dx を求める問題です。

2. 解き方の手順

不定積分の公式 xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C (ただし、n1n \neq -1、Cは積分定数)を利用します。
まず、積分記号の外に定数 7-7 を出します。
(7x2)dx=7x2dx \int (-7x^2) dx = -7 \int x^2 dx
次に、x2x^2 の積分を行います。n=2n=2 なので、公式を適用すると
x2dx=x2+12+1+C=x33+C \int x^2 dx = \frac{x^{2+1}}{2+1} + C = \frac{x^3}{3} + C
したがって、
7x2dx=7(x33+C)=73x3+C -7 \int x^2 dx = -7 (\frac{x^3}{3} + C) = -\frac{7}{3}x^3 + C'
ここで、C=7CC' = -7C も積分定数です。

3. 最終的な答え

73x3+C-\frac{7}{3}x^3 + C

「解析学」の関連問題

与えられた極限 $\lim_{x \to +0} \frac{(\log x + 1)^2}{4x}$ を計算します。ここで $\log x$ は自然対数とします。

極限自然対数ロピタルの定理
2025/7/25

定積分 $\int_{1}^{2} 3x^2 dx$ を計算してください。

定積分不定積分微積分学の基本定理arctan
2025/7/25

与えられた極限値を求めます。問題は以下の通りです。 $\lim_{x \to +0} \frac{\log x}{x}$ ここで、$\log x$ は自然対数(底が $e$ の対数)を表します。

極限自然対数発散ロピタルの定理
2025/7/25

$a$ を正の定数とする。曲線 $x = a(\theta - \sin\theta), y = a(1 - \cos\theta)$ $(0 \leq \theta \leq 2\pi)$ 上の点P...

パラメータ表示法線極限微分
2025/7/25

曲線 $C: y = x^3 - kx$ 上の点 $A(a, a^3 - ka)$ における接線 $l_1$ を引く。$l_1$ と $C$ の $A$ 以外の交点を $B$ とする。点 $B$ にお...

接線微分関数の最大最小不等式
2025/7/25

次の極限を計算します。 $\lim_{x \to 0} \frac{-x^2 + \sinh^2(2x)}{4\sinh^2(x)}$

極限ロピタルの定理双曲線関数テイラー展開
2025/7/25

与えられた極限の等式 $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$ を証明する。

極限テイラー展開自然対数指数関数
2025/7/25

(1) $\lim_{x \to 0} \frac{\sqrt{1-x} - \sqrt{1+2x}}{x}$ の極限値を求めよ。 (2) $\lim_{x \to -2} \frac{x^2 + a...

極限有理化不定形因数分解定数
2025/7/25

与えられた画像には、以下の3つの極限を求める問題が含まれています。 (1) $\lim_{x\to 0} \frac{x - \sin x}{x^3}$ (3) $\lim_{x\to 0} \fra...

極限ロピタルの定理三角関数逆三角関数テイラー展開
2025/7/25

与えられた二つの二変数関数 $f(x, y)$ について、$(x, y)$ が $(0, 0)$ に近づくときの極限値を求める問題です。 (i) $f(x, y) = \frac{x^2 y^2}{...

多変数関数極限極座標はさみうちの原理
2025/7/25