次の不定積分を求めます。 $\int \frac{x+1}{2x^2 - x - 1} dx$解析学積分不定積分部分分数分解対数関数2025/8/151. 問題の内容次の不定積分を求めます。∫x+12x2−x−1dx\int \frac{x+1}{2x^2 - x - 1} dx∫2x2−x−1x+1dx2. 解き方の手順まず、分母を因数分解します。2x2−x−1=(2x+1)(x−1)2x^2 - x - 1 = (2x+1)(x-1)2x2−x−1=(2x+1)(x−1)次に、被積分関数を部分分数分解します。x+12x2−x−1=x+1(2x+1)(x−1)=A2x+1+Bx−1\frac{x+1}{2x^2 - x - 1} = \frac{x+1}{(2x+1)(x-1)} = \frac{A}{2x+1} + \frac{B}{x-1}2x2−x−1x+1=(2x+1)(x−1)x+1=2x+1A+x−1B両辺に (2x+1)(x−1)(2x+1)(x-1)(2x+1)(x−1) を掛けるとx+1=A(x−1)+B(2x+1)x+1 = A(x-1) + B(2x+1)x+1=A(x−1)+B(2x+1)x+1=Ax−A+2Bx+Bx+1 = Ax - A + 2Bx + Bx+1=Ax−A+2Bx+Bx+1=(A+2B)x+(−A+B)x+1 = (A+2B)x + (-A+B)x+1=(A+2B)x+(−A+B)係数を比較すると、A+2B=1A+2B = 1A+2B=1−A+B=1-A+B = 1−A+B=12つの式を足し合わせると、3B=23B = 23B=2B=23B = \frac{2}{3}B=32A=B−1=23−1=−13A = B - 1 = \frac{2}{3} - 1 = -\frac{1}{3}A=B−1=32−1=−31したがって、x+12x2−x−1=−1312x+1+231x−1\frac{x+1}{2x^2 - x - 1} = -\frac{1}{3}\frac{1}{2x+1} + \frac{2}{3}\frac{1}{x-1}2x2−x−1x+1=−312x+11+32x−11積分は∫x+12x2−x−1dx=∫(−1312x+1+231x−1)dx\int \frac{x+1}{2x^2 - x - 1} dx = \int \left( -\frac{1}{3}\frac{1}{2x+1} + \frac{2}{3}\frac{1}{x-1} \right) dx∫2x2−x−1x+1dx=∫(−312x+11+32x−11)dx=−13∫12x+1dx+23∫1x−1dx= -\frac{1}{3} \int \frac{1}{2x+1} dx + \frac{2}{3} \int \frac{1}{x-1} dx=−31∫2x+11dx+32∫x−11dx=−13⋅12ln∣2x+1∣+23ln∣x−1∣+C= -\frac{1}{3} \cdot \frac{1}{2} \ln|2x+1| + \frac{2}{3} \ln|x-1| + C=−31⋅21ln∣2x+1∣+32ln∣x−1∣+C=−16ln∣2x+1∣+23ln∣x−1∣+C= -\frac{1}{6} \ln|2x+1| + \frac{2}{3} \ln|x-1| + C=−61ln∣2x+1∣+32ln∣x−1∣+C3. 最終的な答え−16ln∣2x+1∣+23ln∣x−1∣+C-\frac{1}{6} \ln|2x+1| + \frac{2}{3} \ln|x-1| + C−61ln∣2x+1∣+32ln∣x−1∣+C