問題は $9a \times 7ab$ を計算することです。

代数学式の計算単項式積の計算
2025/8/15

1. 問題の内容

問題は 9a×7ab9a \times 7ab を計算することです。

2. 解き方の手順

係数同士、文字同士をそれぞれ掛け合わせます。
まず、係数を掛け合わせます。
9×7=639 \times 7 = 63
次に、a×a=a2a \times a = a^2です。
最後に、残りの文字bbを付け加えます。
したがって、9a×7ab=63a2b9a \times 7ab = 63a^2b となります。

3. 最終的な答え

63a2b63a^2b

「代数学」の関連問題

次の2つの不等式を解きます。 (1) $|x-1| < |2x-3| - 2$ (2) $||x| - 1| < 3$

不等式絶対値場合分け
2025/8/16

連立一次方程式を解く問題です。 与えられた連立方程式は以下の通りです。 $5x + 6z = 7$ $3x - z = -5$

連立一次方程式加減法代入法変数
2025/8/16

画像には、以下の4つの数学の問題があります。 (5) $\frac{3}{5} \times (-\frac{3}{4}) + \frac{1}{4}$ (6) $\sqrt{12} - \sqrt{...

四則演算根号単項式多項式式の計算文字式
2025/8/16

## 問題3

二次関数最小値確率不等式三角関数2進数余弦定理幾何学
2025/8/16

与えられた4つの等比数列の和を求める問題です。

等比数列数列の和公式
2025/8/16

2次関数 $y=x^2-4x+3$ について、集合 $A = \{y \mid 0 \leq x \leq 3\}$, $B = \{y \mid 2 \leq x \leq 5\}$, $C = \...

二次関数集合関数の範囲
2025/8/16

数列 $\{a_n\}$ が漸化式 $a_1 = 1$, $a_2 = 3$, $a_{n+2} + a_{n+1} - 2a_n = 0$ $(n = 1, 2, ...)$ で定義されているとき、...

数列漸化式数学的帰納法
2025/8/16

初項が1、公比が2の等比数列において、初めて1億を超えるのは第何項か求める問題です。ただし、$log_{10}2 = 0.3010$を使用します。

等比数列対数指数
2025/8/16

$k$ を正の整数とするとき、不等式 $5n^2 - 2kn + 1 < 0$ を満たす整数 $n$ がちょうど1個であるような $k$ の値をすべて求める問題です。

二次不等式解の公式整数解
2025/8/16

第4項が6、第6項が24である等比数列の初項と公比を求める。

等比数列数列初項公比
2025/8/16