与えられた4つの等比数列の和を求める問題です。代数学等比数列数列の和公式2025/8/16以下に、与えられた等比数列の和を計算します。1. 問題の内容与えられた4つの等比数列の和を求める問題です。2. 解き方の手順等比数列の和の公式:Sn=a(1−rn)1−rS_n = \frac{a(1-r^n)}{1-r}Sn=1−ra(1−rn) (ただし、aaaは初項、rrrは公比、nnnは項数)(1) 初項 a=1a = 1a=1, 公比 r=−2r = -2r=−2, 項数 n=10n = 10n=10S10=1(1−(−2)10)1−(−2)=1−10243=−10233=−341S_{10} = \frac{1(1-(-2)^{10})}{1-(-2)} = \frac{1-1024}{3} = \frac{-1023}{3} = -341S10=1−(−2)1(1−(−2)10)=31−1024=3−1023=−341(2) 初項 a=12a = \frac{1}{2}a=21, 公比 r=12r = \frac{1}{2}r=21, 項数 n=10n = 10n=10S10=12(1−(12)10)1−12=12(1−11024)12=1−11024=10231024S_{10} = \frac{\frac{1}{2}(1-(\frac{1}{2})^{10})}{1-\frac{1}{2}} = \frac{\frac{1}{2}(1-\frac{1}{1024})}{\frac{1}{2}} = 1 - \frac{1}{1024} = \frac{1023}{1024}S10=1−2121(1−(21)10)=2121(1−10241)=1−10241=10241023(3) 初項 a=1a = 1a=1, 公比 r=2r = \sqrt{2}r=2, 項数 n=10n = 10n=10S10=1(1−(2)10)1−2=1−251−2=1−321−2=−311−2=−31(1+2)(1−2)(1+2)=−31(1+2)1−2=31(1+2)=31+312S_{10} = \frac{1(1-(\sqrt{2})^{10})}{1-\sqrt{2}} = \frac{1-2^5}{1-\sqrt{2}} = \frac{1-32}{1-\sqrt{2}} = \frac{-31}{1-\sqrt{2}} = \frac{-31(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})} = \frac{-31(1+\sqrt{2})}{1-2} = 31(1+\sqrt{2}) = 31+31\sqrt{2}S10=1−21(1−(2)10)=1−21−25=1−21−32=1−2−31=(1−2)(1+2)−31(1+2)=1−2−31(1+2)=31(1+2)=31+312(4) 初項 a=2a = 2a=2, 公比 r=13r = \frac{1}{3}r=31, 項数 nnnSn=2(1−(13)n)1−13=2(1−(13)n)23=3(1−(13)n)=3−3(13)n=3−(13)n−1S_n = \frac{2(1-(\frac{1}{3})^n)}{1-\frac{1}{3}} = \frac{2(1-(\frac{1}{3})^n)}{\frac{2}{3}} = 3(1-(\frac{1}{3})^n) = 3 - 3(\frac{1}{3})^n = 3 - (\frac{1}{3})^{n-1}Sn=1−312(1−(31)n)=322(1−(31)n)=3(1−(31)n)=3−3(31)n=3−(31)n−13. 最終的な答え(1) -341(2) 10231024\frac{1023}{1024}10241023(3) 31+31231+31\sqrt{2}31+312(4) 3−(13)n−13 - (\frac{1}{3})^{n-1}3−(31)n−1