因数定理を用いて、3次式 $3x^3 + 4x^2 - 13x + 6$ を因数分解し、$(x - \text{ク})(x + \text{ケ})(3x - \text{コ})$ の形式にする時の、ク、ケ、コの値を求める問題です。
2025/8/16
1. 問題の内容
因数定理を用いて、3次式 を因数分解し、 の形式にする時の、ク、ケ、コの値を求める問題です。
2. 解き方の手順
因数定理を用いるために、 とおきます。
となる の値をいくつか試して探します。
まず、 を試すと、 となり、 は の解の一つであることがわかります。
したがって、 は を因数に持ちます。
次に、 を試すと、 となり、 は の解の一つであることがわかります。
したがって、 は を因数に持ちます。
は3次式なので、残りの因数は の形になると考えられます。
となることを確認するために、右辺を展開します。
よって、 と因数分解できます。
3. 最終的な答え
ク = 1
ケ = 3
コ = 2