定積分 $\int_{1}^{2} \frac{x-1}{\sqrt[3]{x}} dx$ を計算します。解析学定積分積分積分計算関数2025/8/161. 問題の内容定積分 ∫12x−1x3dx\int_{1}^{2} \frac{x-1}{\sqrt[3]{x}} dx∫123xx−1dx を計算します。2. 解き方の手順まず、被積分関数を整理します。x3=x13\sqrt[3]{x} = x^{\frac{1}{3}}3x=x31 であるから、x−1x3=xx13−1x13=x1−13−x−13=x23−x−13\frac{x-1}{\sqrt[3]{x}} = \frac{x}{x^{\frac{1}{3}}} - \frac{1}{x^{\frac{1}{3}}} = x^{1-\frac{1}{3}} - x^{-\frac{1}{3}} = x^{\frac{2}{3}} - x^{-\frac{1}{3}}3xx−1=x31x−x311=x1−31−x−31=x32−x−31したがって、∫12x−1x3dx=∫12(x23−x−13)dx\int_{1}^{2} \frac{x-1}{\sqrt[3]{x}} dx = \int_{1}^{2} (x^{\frac{2}{3}} - x^{-\frac{1}{3}}) dx∫123xx−1dx=∫12(x32−x−31)dx次に、積分を実行します。∫x23dx=x23+123+1+C=x5353+C=35x53+C\int x^{\frac{2}{3}} dx = \frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1} + C = \frac{x^{\frac{5}{3}}}{\frac{5}{3}} + C = \frac{3}{5} x^{\frac{5}{3}} + C∫x32dx=32+1x32+1+C=35x35+C=53x35+C∫x−13dx=x−13+1−13+1+C=x2323+C=32x23+C\int x^{-\frac{1}{3}} dx = \frac{x^{-\frac{1}{3}+1}}{-\frac{1}{3}+1} + C = \frac{x^{\frac{2}{3}}}{\frac{2}{3}} + C = \frac{3}{2} x^{\frac{2}{3}} + C∫x−31dx=−31+1x−31+1+C=32x32+C=23x32+Cよって、∫12(x23−x−13)dx=[35x53−32x23]12\int_{1}^{2} (x^{\frac{2}{3}} - x^{-\frac{1}{3}}) dx = \left[ \frac{3}{5} x^{\frac{5}{3}} - \frac{3}{2} x^{\frac{2}{3}} \right]_{1}^{2} ∫12(x32−x−31)dx=[53x35−23x32]12=(35(2)53−32(2)23)−(35(1)53−32(1)23)=\left( \frac{3}{5} (2)^{\frac{5}{3}} - \frac{3}{2} (2)^{\frac{2}{3}} \right) - \left( \frac{3}{5} (1)^{\frac{5}{3}} - \frac{3}{2} (1)^{\frac{2}{3}} \right) =(53(2)35−23(2)32)−(53(1)35−23(1)32)=35(2)53−32(2)23−35+32=\frac{3}{5} (2)^{\frac{5}{3}} - \frac{3}{2} (2)^{\frac{2}{3}} - \frac{3}{5} + \frac{3}{2} =53(2)35−23(2)32−53+23=35(2)23⋅2−32(2)23−35+32=\frac{3}{5} (2)^{\frac{2}{3}} \cdot 2 - \frac{3}{2} (2)^{\frac{2}{3}} - \frac{3}{5} + \frac{3}{2} =53(2)32⋅2−23(2)32−53+23=(2)23(65−32)−610+1510=(2)^{\frac{2}{3}} (\frac{6}{5} - \frac{3}{2}) - \frac{6}{10} + \frac{15}{10}=(2)32(56−23)−106+1015=(2)23(12−1510)+910=(2)^{\frac{2}{3}} (\frac{12-15}{10}) + \frac{9}{10}=(2)32(1012−15)+109=−310(2)23+910=910−310223=-\frac{3}{10} (2)^{\frac{2}{3}} + \frac{9}{10} = \frac{9}{10} - \frac{3}{10} 2^{\frac{2}{3}}=−103(2)32+109=109−103232=9−3⋅22310=3(3−223)10=\frac{9 - 3 \cdot 2^{\frac{2}{3}}}{10} = \frac{3(3 - 2^{\frac{2}{3}})}{10}=109−3⋅232=103(3−232)3. 最終的な答え3(3−223)10\frac{3(3 - 2^{\frac{2}{3}})}{10}103(3−232)