定数 $a$ が与えられたとき、関数 $y=x^2-4ax$ の $0 \le x \le 2$ における最小値を求める。

代数学二次関数最大・最小場合分け平方完成
2025/8/16

1. 問題の内容

定数 aa が与えられたとき、関数 y=x24axy=x^2-4ax0x20 \le x \le 2 における最小値を求める。

2. 解き方の手順

まず、与えられた関数を平方完成する。
y=x24ax=(x2a)24a2y = x^2 - 4ax = (x - 2a)^2 - 4a^2
このグラフは下に凸な放物線で、軸は x=2ax = 2a である。
定義域 0x20 \le x \le 2 における最小値を求めるために、軸の位置によって場合分けを行う。
(1) 2a<02a < 0 のとき、すなわち a<0a < 0 のとき、
区間 0x20 \le x \le 2 で関数は単調増加なので、x=0x=0 で最小値をとる。
最小値は y=024a(0)=0y = 0^2 - 4a(0) = 0
(2) 02a20 \le 2a \le 2 のとき、すなわち 0a10 \le a \le 1 のとき、
x=2ax = 2a が区間 0x20 \le x \le 2 に含まれるので、x=2ax = 2a で最小値をとる。
最小値は y=(2a)24a(2a)=4a28a2=4a2y = (2a)^2 - 4a(2a) = 4a^2 - 8a^2 = -4a^2
(3) 2<2a2 < 2a のとき、すなわち 1<a1 < a のとき、
区間 0x20 \le x \le 2 で関数は単調減少なので、x=2x=2 で最小値をとる。
最小値は y=224a(2)=48ay = 2^2 - 4a(2) = 4 - 8a
まとめると、
* a<0a < 0 のとき、最小値は 00
* 0a10 \le a \le 1 のとき、最小値は 4a2-4a^2
* 1<a1 < a のとき、最小値は 48a4 - 8a

3. 最終的な答え

\begin{cases}
0 & (a < 0) \\
-4a^2 & (0 \le a \le 1) \\
4-8a & (1 < a)
\end{cases}

「代数学」の関連問題

2次関数 $y = x^2 - 2ax + 4a$ の最小値 $m$ を $a$ の式で表し、さらに $m$ の値を最大にする $a$ の値と、$m$ の最大値を求めよ。

二次関数最大値最小値平方完成
2025/8/16

3次方程式 $x^3 - 5x^2 + 10x - 6 = 0$ の解を求め、与えられた形式 $x = チ, ツ \pm \sqrt{テ}i$ に当てはめる問題です。

3次方程式解の公式複素数因数定理因数分解
2025/8/16

$P(x) = x^3 + x^2 - 2x - 8$ について、$P( \boxed{サ}) = 0$ となる値を見つけ、組立除法を使って因数分解を行い、$P(x)$ を $(x - \boxed{...

多項式因数分解組立除法三次方程式
2025/8/16

因数定理を用いて、3次式 $3x^3 + 4x^2 - 13x + 6$ を因数分解し、$(x - \text{ク})(x + \text{ケ})(3x - \text{コ})$ の形式にする時の、ク...

因数分解因数定理3次式
2025/8/16

多項式 $P(x) = x^3 - 3x^2 + 4x + 5$ を1次式 $x - 2$ で割ったときの余りを求める問題です。

多項式剰余の定理代数
2025/8/16

問題2と問題3の小問について解答を求められています。 問題2は、(1)工夫して計算する問題と、(2)代入計算の問題です。 問題3は、(1)奇数の表現、(2)3つの連続する整数の表現、(3)2桁の自然数...

式の計算文字式因数分解代入
2025/8/16

問題は、与えられた多項式の計算問題です。具体的には、 (5) $(15a - 9b + 6) \div (-3)$ (7) $3xy^2 \times (-6x)$ の二つの問題を解きます。

多項式計算分配法則単項式
2025/8/16

画像に写っている多項式の計算問題のうち、以下の2問を解きます。 (2) $x^2 + 6x - 5x - 3x^2$ (6) $2(a - 2b) - 4(2a - b)$ (8) $12a^2b \...

多項式計算展開同類項割り算
2025/8/16

与えられた計算問題を解く。 1. $3.14 \times 99 - 3.14 \times 199$ を計算する。

計算式の計算数値計算代入
2025/8/16

問題は2つあります。 (1) $3.14 \times 99 - 3.14 \times 199$ を工夫して計算する。 (2) $a = -2$, $b = 4$ のとき、$3ab^2 \times...

計算分配法則式の計算文字式の計算代入
2025/8/16