二次方程式 $x^2 - 48 = 0$ を解く問題です。代数学二次方程式平方根方程式2025/8/161. 問題の内容二次方程式 x2−48=0x^2 - 48 = 0x2−48=0 を解く問題です。2. 解き方の手順まず、方程式を x2x^2x2 について解きます。x2−48=0x^2 - 48 = 0x2−48=0両辺に48を加算します。x2=48x^2 = 48x2=48次に、両辺の平方根をとります。x=±48x = \pm\sqrt{48}x=±4848\sqrt{48}48 を簡略化します。48 は 16×316 \times 316×3 と分解できます。x=±16×3x = \pm\sqrt{16 \times 3}x=±16×3x=±16×3x = \pm\sqrt{16} \times \sqrt{3}x=±16×3x=±43x = \pm 4\sqrt{3}x=±433. 最終的な答えx=43,−43x = 4\sqrt{3}, -4\sqrt{3}x=43,−43