三角形ABCにおいて、$a=5$, $c=4$, $B=120^\circ$のとき、面積を求める問題です。面積は「ス $\sqrt{セ}$」の形で表されます。

幾何学三角形面積正弦三角比
2025/8/16

1. 問題の内容

三角形ABCにおいて、a=5a=5, c=4c=4, B=120B=120^\circのとき、面積を求める問題です。面積は「ス \sqrt{セ}」の形で表されます。

2. 解き方の手順

三角形の面積の公式 S=12acsinBS = \frac{1}{2}ac\sin B を使います。
a=5a=5, c=4c=4, B=120B=120^\circ を代入すると、
S=12×5×4×sin120S = \frac{1}{2} \times 5 \times 4 \times \sin 120^\circ
sin120=sin(18060)=sin60=32\sin 120^\circ = \sin (180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}
したがって、
S=12×5×4×32=5×2×32=53S = \frac{1}{2} \times 5 \times 4 \times \frac{\sqrt{3}}{2} = 5 \times 2 \times \frac{\sqrt{3}}{2} = 5\sqrt{3}
面積は 535\sqrt{3} となるので、「ス」は5、「セ」は3です。

3. 最終的な答え

ス = 5
セ = 3

「幾何学」の関連問題

問題1では、$sin \frac{5}{8}\pi$と$cos \frac{5}{8}\pi$、および$sin \frac{7}{12}\pi$と$cos \frac{7}{12}\pi$の値を求める...

三角関数三角比半角の公式加法定理
2025/8/16

問題1(1)は、$\sin \frac{5}{8}\pi$ と $\cos \frac{5}{8}\pi$ の値を求め、与えられた選択肢から正解を選ぶ問題です。

三角関数半角の公式弧度法三角比
2025/8/16

図に示された角度から、角度 $x$ の大きさを求める問題です。図にはいくつかの三角形があり、角度の記号から二等辺三角形であることがわかります。

角度三角形二等辺三角形外角内角の和
2025/8/16

面積が2cm²のひし形の対角線の長さをそれぞれ $x$ cm、 $y$ cmとしたときの、$x$ と $y$ の関係を表すグラフを選ぶ問題です。グラフには「ア」、「イ」、「ウ」、「エ」、「オ」と名前が...

ひし形面積対角線グラフ反比例
2025/8/16

三角形ABCにおいて、$AB = 3$, $BC = 4$, $\angle B = 120^{\circ}$ のとき、$AC$の長さを求めよ。

余弦定理三角形辺の長さ
2025/8/16

図において、$x$ の値を求める問題です。図は、直角三角形 $ABC$ と、点 $B$ と $C$ を結ぶ半円で構成されています。角 $ABC$ は $45^\circ$ で、$BC$ の長さは $2...

直角三角形三平方の定理角度辺の長さ
2025/8/16

直角三角形ABCにおいて、角Bが45度、BCに接する円弧の長さが2cmのとき、斜辺ABの長さ $x$ を求める問題です。

直角三角形円弧三平方の定理三角比
2025/8/16

直角三角形の斜辺の長さが $2\sqrt{13}$ cm、高さが $4$ cmであるとき、底辺の長さ $x$ を求める問題です。

ピタゴラスの定理直角三角形辺の長さ
2025/8/16

DE // BC のとき、xの値を求める問題です。三角形ADEと三角形ABCは相似の関係にあります。AE = 3 cm, AD = 4 cm, AB = 6 cm, AC = x cm が与えられてい...

相似三角形比例線分の比
2025/8/16

DE // BCのとき、xの値を求める問題です。三角形ADEと三角形ABCは相似です。AE = 3cm、AD = 4cm、AB = 6cm、AC = x cmです。

相似三角形比例
2025/8/16