与えられた式 $(x^2-4x+3)(x^2-12x+35)-9$ を因数分解する問題です。代数学因数分解多項式代数2025/8/181. 問題の内容与えられた式 (x2−4x+3)(x2−12x+35)−9(x^2-4x+3)(x^2-12x+35)-9(x2−4x+3)(x2−12x+35)−9 を因数分解する問題です。2. 解き方の手順まず、それぞれの括弧の中を因数分解します。x2−4x+3=(x−1)(x−3)x^2 - 4x + 3 = (x-1)(x-3)x2−4x+3=(x−1)(x−3)x2−12x+35=(x−5)(x−7)x^2 - 12x + 35 = (x-5)(x-7)x2−12x+35=(x−5)(x−7)元の式は(x−1)(x−3)(x−5)(x−7)−9(x-1)(x-3)(x-5)(x-7)-9(x−1)(x−3)(x−5)(x−7)−9となります。ここで、x−4=tx-4=tx−4=t とおくと、x−1=t+3x-1 = t+3x−1=t+3x−3=t+1x-3 = t+1x−3=t+1x−5=t−1x-5 = t-1x−5=t−1x−7=t−3x-7 = t-3x−7=t−3となるので、(t+3)(t+1)(t−1)(t−3)−9=(t+3)(t−3)(t+1)(t−1)−9=(t2−9)(t2−1)−9(t+3)(t+1)(t-1)(t-3) - 9 = (t+3)(t-3)(t+1)(t-1) - 9 = (t^2-9)(t^2-1)-9(t+3)(t+1)(t−1)(t−3)−9=(t+3)(t−3)(t+1)(t−1)−9=(t2−9)(t2−1)−9=t4−10t2+9−9=t4−10t2=t2(t2−10)=t^4 - 10t^2 + 9 - 9 = t^4 - 10t^2 = t^2(t^2-10)=t4−10t2+9−9=t4−10t2=t2(t2−10)となります。t=x−4t=x-4t=x−4 を代入すると、(x−4)2((x−4)2−10)=(x−4)2(x2−8x+16−10)=(x−4)2(x2−8x+6)(x-4)^2((x-4)^2 - 10) = (x-4)^2(x^2 - 8x + 16 - 10) = (x-4)^2(x^2 - 8x + 6)(x−4)2((x−4)2−10)=(x−4)2(x2−8x+16−10)=(x−4)2(x2−8x+6)したがって、(x2−4x+3)(x2−12x+35)−9=(x−1)(x−3)(x−5)(x−7)−9(x^2-4x+3)(x^2-12x+35)-9 = (x-1)(x-3)(x-5)(x-7)-9(x2−4x+3)(x2−12x+35)−9=(x−1)(x−3)(x−5)(x−7)−9=(x2−8x+7)(x2−8x+15)−9=(x^2 - 8x + 7)(x^2 - 8x + 15) - 9=(x2−8x+7)(x2−8x+15)−9A=x2−8xA = x^2 - 8xA=x2−8x とおくと、(A+7)(A+15)−9=A2+22A+105−9=A2+22A+96=(A+6)(A+16)(A + 7)(A + 15) - 9 = A^2 + 22A + 105 - 9 = A^2 + 22A + 96 = (A+6)(A+16)(A+7)(A+15)−9=A2+22A+105−9=A2+22A+96=(A+6)(A+16)A=x2−8xA = x^2 - 8xA=x2−8x を戻すと、(x2−8x+6)(x2−8x+16)=(x2−8x+6)(x−4)2(x^2 - 8x + 6)(x^2 - 8x + 16) = (x^2 - 8x + 6)(x-4)^2(x2−8x+6)(x2−8x+16)=(x2−8x+6)(x−4)23. 最終的な答え(x−4)2(x2−8x+6)(x-4)^2(x^2-8x+6)(x−4)2(x2−8x+6)