問題は、式 $a^3 + 27$ を因数分解することです。

代数学因数分解多項式
2025/8/18

1. 問題の内容

問題は、式 a3+27a^3 + 27 を因数分解することです。

2. 解き方の手順

a3+27a^3 + 27a3+33a^3 + 3^3 と書き換えることができます。これは和の3乗の公式 x3+y3=(x+y)(x2xy+y2)x^3 + y^3 = (x+y)(x^2 - xy + y^2) を利用して因数分解できます。
この公式において、x=ax = ay=3y = 3 とすると、
a3+33=(a+3)(a2a3+32)a^3 + 3^3 = (a+3)(a^2 - a \cdot 3 + 3^2)
=(a+3)(a23a+9)= (a+3)(a^2 - 3a + 9)

3. 最終的な答え

(a+3)(a23a+9)(a+3)(a^2 - 3a + 9)

「代数学」の関連問題

以下の連立方程式を解きます。 $ \begin{cases} x+y=5 \\ y=2(x+1) \end{cases} $

連立方程式代入法一次方程式
2025/8/18

$3(x+y) = 2x+6$ $3x + 3y = 2x + 6$ $x + 3y = 6$

連立方程式方程式
2025/8/18

与えられた不等式 $\log_3 (x-4) + \log_3 (x-2) < 1$ を解きます。

対数不等式真数条件二次不等式
2025/8/18

与えられた条件を満たす1次関数の式を求める問題です。 (1) 変化の割合(傾き)が -3 で、点 (-2, 7) を通る直線の式を求めます。 (2) 点 (-1, -9) と 点 (6, 5) を通る...

1次関数傾き直線の式座標
2025/8/18

画像に写っている2つの連立方程式を解きます。 問題3: $ \begin{cases} 2x - (y - x) = 2 \\ 3x - 2y = 1 \end{cases} $ 問題4: $ \be...

連立方程式一次方程式代入法整理
2025/8/18

与えられた連立一次方程式 $ \begin{cases} 6x+y=8 \\ 4(x-1)+y=0 \end{cases} $ を解き、$x$と$y$の値を求める問題です。

連立一次方程式方程式代入法計算
2025/8/18

(1) $y$ は $x$ に比例し、$x = -4$ のとき $y = 8$ である。$y$ を $x$ の式で表す。 (2) $y = \frac{a}{x}$ のグラフが点 $(5, 3)$ を...

比例反比例一次関数グラフ
2025/8/18

与えられた連立方程式 $ \begin{cases} 2(x+y) - y = 5 \\ x - y = 1 \end{cases} $ を解き、$x$と$y$の値を求めます。

連立方程式一次方程式代入法
2025/8/18

与えられた対数方程式 $(\log_2 x)^2 = \log_2 4x$ を解きます。

対数対数方程式二次方程式真数条件
2025/8/18

与えられた3つの連立方程式をそれぞれ解く問題です。 (1) $ \begin{cases} 2(x+y) - y = 5 \\ x - y = 1 \end{cases} $ (2) $ \begin...

連立方程式一次方程式
2025/8/18