10本のくじがあり、当たりが4本、はずれが6本である。この中からくじを2本引き、2本ともはずれである確率を求める。ただし、1本目のくじは元に戻さない。
2025/4/7
1. 問題の内容
10本のくじがあり、当たりが4本、はずれが6本である。この中からくじを2本引き、2本ともはずれである確率を求める。ただし、1本目のくじは元に戻さない。
2. 解き方の手順
まず、1本目にはずれを引く確率を求める。次いで、1本目にはずれを引いたという条件の下で、2本目にもはずれを引く確率を求める。最後に、これらの確率を掛け合わせる。
1本目にはずれを引く確率は、はずれの数(6本)をくじの総数(10本)で割ったものとなる。
1本目にはずれを引いた場合、残りのくじは9本となり、はずれのくじは5本となる。したがって、2本目にはずれを引く確率は、残りのくじの数ではずれのくじの数を割ったものとなる。
2本ともにはずれを引く確率は、1本目にはずれを引き、かつ2本目にもはずれを引く確率であるため、上記の2つの確率を掛け合わせる。
計算する。
3. 最終的な答え
1/3