与えられた2次関数 $y = 5x^2 - 2x + 5$ のグラフ上の点 $(-1, 12)$ における接線の方程式を求める問題です。

解析学微分接線2次関数
2025/4/7

1. 問題の内容

与えられた2次関数 y=5x22x+5y = 5x^2 - 2x + 5 のグラフ上の点 (1,12)(-1, 12) における接線の方程式を求める問題です。

2. 解き方の手順

まず、与えられた関数を微分して、その導関数を求めます。導関数は、グラフ上の各点における接線の傾きを表します。
y=5x22x+5y = 5x^2 - 2x + 5xx で微分すると、
dydx=10x2\frac{dy}{dx} = 10x - 2
次に、x=1x = -1 における接線の傾きを求めます。導関数に x=1x = -1 を代入します。
dydxx=1=10(1)2=102=12\frac{dy}{dx}\Bigr|_{x=-1} = 10(-1) - 2 = -10 - 2 = -12
したがって、点 (1,12)(-1, 12) における接線の傾きは 12-12 です。
接線の傾き m=12m = -12 と、点 (x1,y1)=(1,12)(x_1, y_1) = (-1, 12) がわかっているので、点傾斜形を用いて接線の方程式を求めます。点傾斜形は以下の通りです。
yy1=m(xx1)y - y_1 = m(x - x_1)
これに m=12m = -12x1=1x_1 = -1y1=12y_1 = 12 を代入すると、
y12=12(x(1))y - 12 = -12(x - (-1))
y12=12(x+1)y - 12 = -12(x + 1)
y12=12x12y - 12 = -12x - 12
y=12x12+12y = -12x - 12 + 12
y=12xy = -12x

3. 最終的な答え

(1,12)(-1, 12) における接線の方程式は、y=12xy = -12x です。

「解析学」の関連問題

点 $(2, 1)$ から放物線 $y = x^2 - 3x + 4$ に引いた2本の接線と、この放物線が囲む図形の面積を求める問題です。

積分接線放物線面積
2025/7/27

$\tan^{-1}(\tan(\frac{2}{3}\pi))$ の値を求める問題です。

三角関数逆三角関数tan値域
2025/7/26

問題2.2.1では、逆三角関数の値を求める問題です。具体的には、 (1) $cos^{-1}(-\frac{1}{2})$ (2) $tan^{-1}(tan(\frac{3}{4}\pi))$ (3...

逆三角関数三角関数計算等式
2025/7/26

関数 $f(x) = x^3 - 9x^2 + 15x + 7$ について、以下の問いに答えます。 (1) $f(x)$ の増減を調べ、極値を求め、極値をとる $x$ の値を求めます。 (2) $k$...

微分極値増減三次関数方程式の解
2025/7/26

定積分 $\int_{\frac{1}{2}}^{\frac{5}{4}} \sqrt{18x-8} \, dx$ を計算します。

定積分置換積分不定積分計算
2025/7/26

数列 $\{a_n\}$ の初項から第 $n$ 項までの和 $S_n$ が $S_n = 2^{n+1} - n - 2$ で与えられているとき、以下の問いに答えます。 (1) 数列 $\{a_n\}...

数列級数等比数列和の公式
2025/7/26

放物線 $C: y = -x^2 + 3$ について、以下の問題を解きます。 (1) 点 $(1,6)$ から $C$ に引いた接線の方程式を求めます。 (2) (1) で求めた2本の接線と $C$ ...

放物線接線積分面積
2025/7/26

媒介変数 $t$ を用いて $x = t^2 e^{2t}$ および $y = (t^2 + t + 1)e^t$ と表されるとき、$\frac{dy}{dx}$ を計算する問題です。画像の計算過程に...

微分媒介変数表示合成関数の微分
2025/7/26

与えられた関数 $y = (\log_e x)^x$ の微分 $y'$ を求める問題です。ここで、$\log_e x$ は自然対数を表します。

微分合成関数の微分対数関数自然対数
2025/7/26

関数 $y = (x+1)\log_e(x(x+1))$ の導関数 $y' = \frac{dy}{dx}$ を求めます。

導関数微分対数関数
2025/7/26