関数 $y = -x^2 + 2x$ において、$x$ の値が $1$ から $4$ まで変化するときの平均変化率を求めよ。

解析学平均変化率関数二次関数微分
2025/4/7

1. 問題の内容

関数 y=x2+2xy = -x^2 + 2x において、xx の値が 11 から 44 まで変化するときの平均変化率を求めよ。

2. 解き方の手順

平均変化率は、yの増加量xの増加量\frac{yの増加量}{xの増加量} で求められる。
まず、x=1x=1 のときの yy の値を計算する。
y(1)=(1)2+2(1)=1+2=1y(1) = -(1)^2 + 2(1) = -1 + 2 = 1
次に、x=4x=4 のときの yy の値を計算する。
y(4)=(4)2+2(4)=16+8=8y(4) = -(4)^2 + 2(4) = -16 + 8 = -8
xx の増加量は 41=34 - 1 = 3 である。
yy の増加量は y(4)y(1)=81=9y(4) - y(1) = -8 - 1 = -9 である。
したがって、平均変化率は、93=3\frac{-9}{3} = -3 となる。

3. 最終的な答え

-3

「解析学」の関連問題

グラフが与えられており、$y = \sin \theta$ である。このグラフを利用して、$y = \sin 2\theta$ のグラフを描く問題である。

三角関数グラフ周期振幅グラフの描画
2025/4/14

問題は、与えられた角度 $\theta$ に対して、$\sin 2\theta$ と $2\sin \theta$ の値を求める表を完成させることです。$\theta$ は度数法と弧度法で与えられてお...

三角関数sin角度弧度法度数法
2025/4/14

与えられた積分 $\int \frac{2}{e^{3x}} dx$ を計算します。

積分指数関数置換積分
2025/4/14

$\int \sin 4\theta d\theta$ を計算する問題です。

積分三角関数置換積分
2025/4/14

関数 $f(x) = 3\cos(\pi x)$ の導関数 $\frac{df(x)}{dx}$ を求める問題です。

導関数微分三角関数合成関数の微分連鎖律
2025/4/14

関数 $f(x) = 5\sin(\pi x + 1)$ の導関数 $\frac{df(x)}{dx}$ を求めよ。

導関数三角関数合成関数の微分
2025/4/14

関数 $f(x) = \frac{3}{e^{4x-1}}$ の導関数 $\frac{df(x)}{dx}$ を求める問題です。

微分導関数指数関数合成関数の微分
2025/4/14

関数 $f(\theta) = \cos^2\theta + 8\sin\theta\cos\theta - 5\sin^2\theta$ を合成せよ。

三角関数合成三角関数の合成
2025/4/14

関数 $y = 3x + 4$ の $a$ から $b$ までの平均変化率を求める問題です。

平均変化率一次関数
2025/4/14

関数 $f(x) = x^2$ について、$f'(a)$ を定義に従って求め、グラフ上の点 $(-3, 9)$ における接線の傾きを求めよ。

微分導関数極限接線グラフ
2025/4/14