関数 $y = x^2 - 3x$ の $x = -2$ における微分係数を求めよ。

解析学微分微分係数導関数関数の微分
2025/4/7

1. 問題の内容

関数 y=x23xy = x^2 - 3xx=2x = -2 における微分係数を求めよ。

2. 解き方の手順

まず、yyxx で微分して導関数 yy' を求める。
y=x23xy = x^2 - 3x
y=dydx=2x3y' = \frac{dy}{dx} = 2x - 3
次に、得られた導関数 yy'x=2x = -2 を代入して、微分係数を計算する。
y(2)=2(2)3=43=7y'(-2) = 2(-2) - 3 = -4 - 3 = -7

3. 最終的な答え

-7

「解析学」の関連問題

関数 $f(x) = |x|$ が $x = 0$ で連続であるか、微分可能であるかを定義に従って調べ、空欄を埋める問題です。

連続性微分可能性極限絶対値関数
2025/4/14

関数 $f(x) = \frac{1}{x}$ の $x=2$ における微分係数 $f'(2)$ を定義に基づいて求めます。

微分係数極限関数の微分
2025/4/14

与えられた式は、関数 $f(x) = \frac{1}{x}$ の $x=2$ における微分係数 $f'(2)$ を定義に基づいて計算するものです。具体的には、極限 $\lim_{x \to 2} \...

微分極限微分係数関数の微分
2025/4/14

与えられた積分 $\int (2e^x + \frac{3}{x}) dx$ を計算します。

積分指数関数対数関数不定積分
2025/4/14

与えられた積分 $\int (\frac{1}{\tan x} + 2) \sin x dx$ を計算します。

積分三角関数積分計算
2025/4/14

与えられた積分 $\int \sqrt{x} (1 + \frac{1}{\sqrt{x}})^2 dx$ を計算します。

積分不定積分ルート展開
2025/4/14

与えられた積分 $\int (\sqrt{2x} + 3)^2 dx$ を計算します。

積分積分計算不定積分ルート
2025/4/14

グラフが与えられており、$y = \sin \theta$ である。このグラフを利用して、$y = \sin 2\theta$ のグラフを描く問題である。

三角関数グラフ周期振幅グラフの描画
2025/4/14

問題は、与えられた角度 $\theta$ に対して、$\sin 2\theta$ と $2\sin \theta$ の値を求める表を完成させることです。$\theta$ は度数法と弧度法で与えられてお...

三角関数sin角度弧度法度数法
2025/4/14

与えられた積分 $\int \frac{2}{e^{3x}} dx$ を計算します。

積分指数関数置換積分
2025/4/14