関数 $f(x) = |x|$ が $x = 0$ で連続であるか、微分可能であるかを定義に従って調べ、空欄を埋める問題です。

解析学連続性微分可能性極限絶対値関数
2025/4/14

1. 問題の内容

関数 f(x)=xf(x) = |x|x=0x = 0 で連続であるか、微分可能であるかを定義に従って調べ、空欄を埋める問題です。

2. 解き方の手順

まず、右側極限を計算します。x>0x > 0 のとき、x=x|x| = x なので、
limx+0f(x)f(0)x=limx+0xx=limx+0xx=limx+01=1\lim_{x \to +0} \frac{f(x) - f(0)}{x} = \lim_{x \to +0} \frac{|x|}{x} = \lim_{x \to +0} \frac{x}{x} = \lim_{x \to +0} 1 = 1
次に、左側極限を計算します。x<0x < 0 のとき、x=x|x| = -x なので、
limx0f(x)f(0)x=limx0xx=limx0xx=limx01=1\lim_{x \to -0} \frac{f(x) - f(0)}{x} = \lim_{x \to -0} \frac{|x|}{x} = \lim_{x \to -0} \frac{-x}{x} = \lim_{x \to -0} -1 = -1

3. 最終的な答え

一つ目の空欄には 1 が入り、二つ目の空欄には -1 が入ります。
右側極限: 1
左側極限: -1

「解析学」の関連問題

与えられた曲線上の点Aにおける接線と法線の方程式を求める問題です。 (1) $y^2 = -8x$, A(-2, -4)における接線と法線の方程式を求めます。 (2) $\frac{x^2}{4} ...

微分接線法線陰関数二次曲線
2025/4/15

数学的帰納法を用いて、関数 $x^n$ の導関数が $nx^{n-1}$ であることを証明する過程の一部です。$n=k$ のときに成り立つと仮定し、$n=k+1$ のときにも成り立つことを示すことで、...

微分数学的帰納法導関数積の微分
2025/4/15

与えられた曲線上の点Aにおける接線と法線の方程式を求める問題です。2つの小問があります。 (1) 曲線 $y^2 = -8x$ 上の点 $A(-1, -2\sqrt{2})$ (2) 曲線 $\fra...

微分接線法線陰関数微分
2025/4/15

画像には $Lne =$ と書かれています。この式を解き、$Lne$ の値を求めます。ただし、$e$ は自然対数の底(ネイピア数)を表し、$L$ は自然対数(底が$e$の対数)を表すものとします。つま...

対数自然対数ネイピア数ln
2025/4/15

与えられた式 $\log_e e^5 + \log_e e^{100}$ の値を計算します。

対数指数関数計算
2025/4/15

画像に書かれている質問は「ロピタルの定理とは何ですか」です。

極限ロピタルの定理微分不定形
2025/4/15

関数 $f(x) = \frac{1}{1-x}$ と $g(x) = \frac{1}{1+x}$ が与えられています。以下の極限を求めます。 (1) $\lim_{x \to 1} f(x)$ (...

極限関数の極限分数関数
2025/4/15

ロピタルの定理は、不定形(例えば、$\frac{0}{0}$や$\frac{\infty}{\infty}$)の極限を求めるための強力なツールです。

極限ロピタルの定理微分不定形
2025/4/15

与えられた極限値を平均値の定理を用いて求める問題です。 $$ \lim_{x \to 0} \frac{\sin x - \sin(\sin x)}{x - \sin x} $$

極限平均値の定理ロピタルの定理テイラー展開三角関数
2025/4/15

$a > 1$ に対して、3つの曲線 $y = \sin x$, $y = \cos x$, $y = a \cos x$ ($0 \le x \le \frac{\pi}{2}$) で囲まれた部分の...

積分面積極限三角関数
2025/4/15