定積分 $\int_{1}^{3} (3x^2 - 4x + 5) dx$ の値を求めます。

解析学定積分積分多項式
2025/4/7

1. 問題の内容

定積分 13(3x24x+5)dx\int_{1}^{3} (3x^2 - 4x + 5) dx の値を求めます。

2. 解き方の手順

まず、不定積分を計算します。
(3x24x+5)dx=x32x2+5x+C\int (3x^2 - 4x + 5) dx = x^3 - 2x^2 + 5x + C
ここでCCは積分定数です。
次に、定積分の値を計算します。
13(3x24x+5)dx=[x32x2+5x]13\int_{1}^{3} (3x^2 - 4x + 5) dx = [x^3 - 2x^2 + 5x]_{1}^{3}
上記の式に積分範囲の上端と下端の値を代入し、差を計算します。
[x32x2+5x]13=(332(32)+5(3))(132(12)+5(1))[x^3 - 2x^2 + 5x]_{1}^{3} = (3^3 - 2(3^2) + 5(3)) - (1^3 - 2(1^2) + 5(1))
=(2718+15)(12+5)= (27 - 18 + 15) - (1 - 2 + 5)
=(24)(4)= (24) - (4)
=20= 20

3. 最終的な答え

20

「解析学」の関連問題

画像に示された数学の問題は、微分、n次導関数の表示、および極限を求める問題を含みます。具体的には以下の通りです。 (1) $(x^2 + x + 1)^5$ の微分 (2) $\sin^2 x - \...

微分n次導関数極限合成関数の微分ライプニッツの公式ロピタルの定理
2025/7/26

$\lim_{x \to 0} \frac{3x^2 - 5x}{x}$ を計算する問題です。

極限微積分
2025/7/26

与えられた関数 $y = -\frac{3}{x^3}$ の微分を求めます。つまり、$\frac{dy}{dx}$ を求めます。

微分関数の微分べき乗の微分微積分
2025/7/26

与えられた2つの関数の極値を求める問題です。 (1) $f(x, y) = x^2 - xy + y^2 - 4x - y$ (2) $f(x, y) = xy(2 - x - y) = 2xy - ...

多変数関数の極値偏微分ヘッセ行列
2025/7/26

与えられた関数 $y = \frac{1}{\sqrt{x}}$ を微分して、$y'$を求める問題です。

微分関数べき乗微分公式
2025/7/26

関数 $y = (\log x)^x$ の導関数を求める問題です。

微分導関数対数関数
2025/7/26

関数 $y = \sin^{-1}x^2$ の極値を求める問題です。

微分逆三角関数極値関数の増減
2025/7/26

与えられた極限 $\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x$ を計算します。

極限指数関数e変数変換
2025/7/26

問題は、次の極限を求めることです。 $\lim_{x \to 0} \frac{e^x - \sin x - \cos x}{x^2}$

極限ロピタルの定理指数関数三角関数
2025/7/26

$\lim_{x \to 0} \frac{\sin 3x}{\sin 2x}$ の極限を計算します。

極限三角関数解析
2025/7/26