与えられた導関数 $F'(x) = 8x^3 + 3x^2 - 4x + 5$ と条件 $F(2) = 17$ を満たす関数 $F(x)$ を求める問題です。

解析学積分導関数不定積分積分定数関数
2025/4/7

1. 問題の内容

与えられた導関数 F(x)=8x3+3x24x+5F'(x) = 8x^3 + 3x^2 - 4x + 5 と条件 F(2)=17F(2) = 17 を満たす関数 F(x)F(x) を求める問題です。

2. 解き方の手順

まず、F(x)F'(x) を積分して F(x)F(x) を求めます。
F(x)=F(x)dx=(8x3+3x24x+5)dxF(x) = \int F'(x) dx = \int (8x^3 + 3x^2 - 4x + 5) dx
各項ごとに積分を行います。
8x3dx=8x3dx=8x44=2x4\int 8x^3 dx = 8 \int x^3 dx = 8 \cdot \frac{x^4}{4} = 2x^4
3x2dx=3x2dx=3x33=x3\int 3x^2 dx = 3 \int x^2 dx = 3 \cdot \frac{x^3}{3} = x^3
4xdx=4xdx=4x22=2x2\int -4x dx = -4 \int x dx = -4 \cdot \frac{x^2}{2} = -2x^2
5dx=5x\int 5 dx = 5x
よって、積分結果は次のようになります。
F(x)=2x4+x32x2+5x+CF(x) = 2x^4 + x^3 - 2x^2 + 5x + C (Cは積分定数)
次に、条件 F(2)=17F(2) = 17 を用いて積分定数 CC を求めます。
F(2)=2(2)4+(2)32(2)2+5(2)+C=17F(2) = 2(2)^4 + (2)^3 - 2(2)^2 + 5(2) + C = 17
2(16)+82(4)+10+C=172(16) + 8 - 2(4) + 10 + C = 17
32+88+10+C=1732 + 8 - 8 + 10 + C = 17
42+C=1742 + C = 17
C=1742C = 17 - 42
C=25C = -25
したがって、F(x)F(x) は以下のようになります。
F(x)=2x4+x32x2+5x25F(x) = 2x^4 + x^3 - 2x^2 + 5x - 25

3. 最終的な答え

F(x)=2x4+x32x2+5x25F(x) = 2x^4 + x^3 - 2x^2 + 5x - 25

「解析学」の関連問題

(a) 関数 $y = \frac{1}{(x^2+1)^3}$ の導関数を求めよ。 (b) 関数 $y = \log\left(\frac{1+\sin x}{\cos x}\right)$ の導関...

導関数微分合成関数の微分対数関数三角関数
2025/7/24

$\lim_{x \to 0} \frac{x}{\sin^{-1} x}$ を計算する。

極限マクローリン展開ロピタルの定理逆三角関数
2025/7/24

次の極限を求めよ。 (a) $\lim_{x\to 0} \frac{2x^2 + 3x}{|x|}$ (b) $\lim_{x\to \infty} (\sqrt{x^2 + 4x} + \sqrt...

極限関数の極限
2025/7/24

与えられた極限 $ \lim_{x \to 0} \frac{2x^2 + 3x}{|x|} $ が存在するかどうかを調べ、存在する場合はその値を求める問題です。

極限絶対値右極限左極限
2025/7/24

与えられた関数 $f(x, y)$ について、以下の問いに答えます。 $f(x, y) = \begin{cases} \frac{2x^3y - 3xy^3}{x^2 + y^2} + xy^3 &...

偏微分極限多変数関数
2025/7/24

与えられた関数 $f(x, y)$ に対して、点 $(0, 0)$ における方向ベクトル $\ell = (\cos\theta, \sin\theta)$ 方向の微分係数 $\frac{\parti...

偏微分方向微分係数極限多変数関数
2025/7/24

$\lim_{\theta \to 0} \frac{1 - \cos(3\theta)}{\theta^2}$ の極限値を求める問題です。

極限三角関数ロピタルの定理不定形
2025/7/24

与えられた関数 $y = \sqrt{-x + 1} + 1$ について、特に指示がないため、この関数の定義域を求めます。

関数の定義域ルート不等式
2025/7/24

(4) 関数 $f(x, y) = \sqrt{x^2 + y^4}$ の偏微分係数 $f_x(0, 0)$ と $f_y(0, 0)$ を求める問題です。 (5) 関数 $f(x, y) = \li...

偏微分極限多変数関数
2025/7/24

与えられた3つの関数をそれぞれ積分する問題です。 (1) $\int \frac{1}{2 + \sin x} dx$ (2) $\int \frac{1 + \sin x}{1 + \cos x} ...

積分三角関数置換積分不定積分
2025/7/24