次の不定積分を求めなさい。ただし、$x$ は $t$ に無関係とする。 $$\int (3t^2 - 8t + 2t + 8x^2) dt$$

解析学不定積分積分多項式
2025/4/7

1. 問題の内容

次の不定積分を求めなさい。ただし、xxtt に無関係とする。
(3t28t+2t+8x2)dt\int (3t^2 - 8t + 2t + 8x^2) dt

2. 解き方の手順

不定積分を計算するために、各項ごとに積分を行います。
(3t28t+2t+8x2)dt=3t2dt8tdt+2tdt+8x2dt\int (3t^2 - 8t + 2t + 8x^2) dt = \int 3t^2 dt - \int 8t dt + \int 2t dt + \int 8x^2 dt
積分を計算します。
3t2dt=t3+C1\int 3t^2 dt = t^3 + C_1
8tdt=4t2+C2\int 8t dt = 4t^2 + C_2
2tdt=t2+C3\int 2t dt = t^2 + C_3
8x2dt=8x2t+C4\int 8x^2 dt = 8x^2t + C_4
これらの結果を元の式に代入すると、
t34t2+t2+8x2t+Ct^3 - 4t^2 + t^2 + 8x^2t + C
t33t2+8x2t+Ct^3 - 3t^2 + 8x^2t + C

3. 最終的な答え

t33t2+8x2t+Ct^3 - 3t^2 + 8x^2t + C
ここで CC は積分定数です。

「解析学」の関連問題

$n$ が2以上の自然数であるとき、次の和を求めます。 $\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 ...

級数部分分数分解シグマ
2025/7/24

(a) 関数 $y = \frac{1}{(x^2+1)^3}$ の導関数を求めよ。 (b) 関数 $y = \log\left(\frac{1+\sin x}{\cos x}\right)$ の導関...

導関数微分合成関数の微分対数関数三角関数
2025/7/24

$\lim_{x \to 0} \frac{x}{\sin^{-1} x}$ を計算する。

極限マクローリン展開ロピタルの定理逆三角関数
2025/7/24

次の極限を求めよ。 (a) $\lim_{x\to 0} \frac{2x^2 + 3x}{|x|}$ (b) $\lim_{x\to \infty} (\sqrt{x^2 + 4x} + \sqrt...

極限関数の極限
2025/7/24

与えられた極限 $ \lim_{x \to 0} \frac{2x^2 + 3x}{|x|} $ が存在するかどうかを調べ、存在する場合はその値を求める問題です。

極限絶対値右極限左極限
2025/7/24

与えられた関数 $f(x, y)$ について、以下の問いに答えます。 $f(x, y) = \begin{cases} \frac{2x^3y - 3xy^3}{x^2 + y^2} + xy^3 &...

偏微分極限多変数関数
2025/7/24

与えられた関数 $f(x, y)$ に対して、点 $(0, 0)$ における方向ベクトル $\ell = (\cos\theta, \sin\theta)$ 方向の微分係数 $\frac{\parti...

偏微分方向微分係数極限多変数関数
2025/7/24

$\lim_{\theta \to 0} \frac{1 - \cos(3\theta)}{\theta^2}$ の極限値を求める問題です。

極限三角関数ロピタルの定理不定形
2025/7/24

与えられた関数 $y = \sqrt{-x + 1} + 1$ について、特に指示がないため、この関数の定義域を求めます。

関数の定義域ルート不等式
2025/7/24

(4) 関数 $f(x, y) = \sqrt{x^2 + y^4}$ の偏微分係数 $f_x(0, 0)$ と $f_y(0, 0)$ を求める問題です。 (5) 関数 $f(x, y) = \li...

偏微分極限多変数関数
2025/7/24