関数 $y = 5x^2 - 2x + 5$ のグラフ上の点 $(-1, 12)$ における接線の方程式を求めます。

解析学微分接線関数の微分導関数
2025/4/7

1. 問題の内容

関数 y=5x22x+5y = 5x^2 - 2x + 5 のグラフ上の点 (1,12)(-1, 12) における接線の方程式を求めます。

2. 解き方の手順

接線の方程式は、y=f(a)(xa)+f(a)y = f'(a)(x - a) + f(a) で表されます。ここで、f(x)=5x22x+5f(x) = 5x^2 - 2x + 5 であり、a=1a = -1 です。
まず、f(x)f'(x) を求めます。
f(x)=ddx(5x22x+5)=10x2f'(x) = \frac{d}{dx}(5x^2 - 2x + 5) = 10x - 2
次に、f(1)f'(-1) を計算します。
f(1)=10(1)2=102=12f'(-1) = 10(-1) - 2 = -10 - 2 = -12
また、f(1)f(-1) は与えられた点 (1,12)(-1, 12)yy 座標であるため、f(1)=12f(-1) = 12 です。
したがって、接線の方程式は以下のようになります。
y=f(1)(x(1))+f(1)=12(x+1)+12y = f'(-1)(x - (-1)) + f(-1) = -12(x + 1) + 12
y=12x12+12y = -12x - 12 + 12
y=12xy = -12x

3. 最終的な答え

y=12xy = -12x

「解析学」の関連問題

$n$ が2以上の自然数であるとき、次の和を求めます。 $\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 ...

級数部分分数分解シグマ
2025/7/24

(a) 関数 $y = \frac{1}{(x^2+1)^3}$ の導関数を求めよ。 (b) 関数 $y = \log\left(\frac{1+\sin x}{\cos x}\right)$ の導関...

導関数微分合成関数の微分対数関数三角関数
2025/7/24

$\lim_{x \to 0} \frac{x}{\sin^{-1} x}$ を計算する。

極限マクローリン展開ロピタルの定理逆三角関数
2025/7/24

次の極限を求めよ。 (a) $\lim_{x\to 0} \frac{2x^2 + 3x}{|x|}$ (b) $\lim_{x\to \infty} (\sqrt{x^2 + 4x} + \sqrt...

極限関数の極限
2025/7/24

与えられた極限 $ \lim_{x \to 0} \frac{2x^2 + 3x}{|x|} $ が存在するかどうかを調べ、存在する場合はその値を求める問題です。

極限絶対値右極限左極限
2025/7/24

与えられた関数 $f(x, y)$ について、以下の問いに答えます。 $f(x, y) = \begin{cases} \frac{2x^3y - 3xy^3}{x^2 + y^2} + xy^3 &...

偏微分極限多変数関数
2025/7/24

与えられた関数 $f(x, y)$ に対して、点 $(0, 0)$ における方向ベクトル $\ell = (\cos\theta, \sin\theta)$ 方向の微分係数 $\frac{\parti...

偏微分方向微分係数極限多変数関数
2025/7/24

$\lim_{\theta \to 0} \frac{1 - \cos(3\theta)}{\theta^2}$ の極限値を求める問題です。

極限三角関数ロピタルの定理不定形
2025/7/24

与えられた関数 $y = \sqrt{-x + 1} + 1$ について、特に指示がないため、この関数の定義域を求めます。

関数の定義域ルート不等式
2025/7/24

(4) 関数 $f(x, y) = \sqrt{x^2 + y^4}$ の偏微分係数 $f_x(0, 0)$ と $f_y(0, 0)$ を求める問題です。 (5) 関数 $f(x, y) = \li...

偏微分極限多変数関数
2025/7/24