与えられた関数 $y = 3x^2 - 2x + 1$ のグラフ上の点 $(2, 9)$ における接線の方程式を求める。

解析学微分接線導関数グラフ
2025/4/7

1. 問題の内容

与えられた関数 y=3x22x+1y = 3x^2 - 2x + 1 のグラフ上の点 (2,9)(2, 9) における接線の方程式を求める。

2. 解き方の手順

(1) 与えられた関数を微分して、導関数を求める。
y=dydx=6x2y' = \frac{dy}{dx} = 6x - 2
(2) 導関数に x=2x = 2 を代入して、点 (2,9)(2, 9) における接線の傾きを求める。
y(2)=6(2)2=122=10y'(2) = 6(2) - 2 = 12 - 2 = 10
(3) 点 (2,9)(2, 9) を通り、傾きが 1010 である直線の式を求める。これは接線の方程式である。
直線の方程式は yy1=m(xx1)y - y_1 = m(x - x_1) で表される。ここで (x1,y1)=(2,9)(x_1, y_1) = (2, 9) であり、m=10m = 10 である。
y9=10(x2)y - 9 = 10(x - 2)
y9=10x20y - 9 = 10x - 20
y=10x20+9y = 10x - 20 + 9
y=10x11y = 10x - 11

3. 最終的な答え

y=10x11y = 10x - 11

「解析学」の関連問題

$n$ が2以上の自然数であるとき、次の和を求めます。 $\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 ...

級数部分分数分解シグマ
2025/7/24

(a) 関数 $y = \frac{1}{(x^2+1)^3}$ の導関数を求めよ。 (b) 関数 $y = \log\left(\frac{1+\sin x}{\cos x}\right)$ の導関...

導関数微分合成関数の微分対数関数三角関数
2025/7/24

$\lim_{x \to 0} \frac{x}{\sin^{-1} x}$ を計算する。

極限マクローリン展開ロピタルの定理逆三角関数
2025/7/24

次の極限を求めよ。 (a) $\lim_{x\to 0} \frac{2x^2 + 3x}{|x|}$ (b) $\lim_{x\to \infty} (\sqrt{x^2 + 4x} + \sqrt...

極限関数の極限
2025/7/24

与えられた極限 $ \lim_{x \to 0} \frac{2x^2 + 3x}{|x|} $ が存在するかどうかを調べ、存在する場合はその値を求める問題です。

極限絶対値右極限左極限
2025/7/24

与えられた関数 $f(x, y)$ について、以下の問いに答えます。 $f(x, y) = \begin{cases} \frac{2x^3y - 3xy^3}{x^2 + y^2} + xy^3 &...

偏微分極限多変数関数
2025/7/24

与えられた関数 $f(x, y)$ に対して、点 $(0, 0)$ における方向ベクトル $\ell = (\cos\theta, \sin\theta)$ 方向の微分係数 $\frac{\parti...

偏微分方向微分係数極限多変数関数
2025/7/24

$\lim_{\theta \to 0} \frac{1 - \cos(3\theta)}{\theta^2}$ の極限値を求める問題です。

極限三角関数ロピタルの定理不定形
2025/7/24

与えられた関数 $y = \sqrt{-x + 1} + 1$ について、特に指示がないため、この関数の定義域を求めます。

関数の定義域ルート不等式
2025/7/24

(4) 関数 $f(x, y) = \sqrt{x^2 + y^4}$ の偏微分係数 $f_x(0, 0)$ と $f_y(0, 0)$ を求める問題です。 (5) 関数 $f(x, y) = \li...

偏微分極限多変数関数
2025/7/24