与えられた不定積分 $\int (-10x^4 + 8x^3 + 2x^2 + 5) dx$ を求めます。

解析学不定積分積分多項式
2025/4/7

1. 問題の内容

与えられた不定積分 (10x4+8x3+2x2+5)dx\int (-10x^4 + 8x^3 + 2x^2 + 5) dx を求めます。

2. 解き方の手順

不定積分の性質を利用して、各項ごとに積分を行います。
xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C (ただし、n1n \neq -1) という公式を用います。ここで、CC は積分定数です。
まず、各項を積分します。
10x4dx=10x4dx=10x55=2x5\int -10x^4 dx = -10 \int x^4 dx = -10 \cdot \frac{x^5}{5} = -2x^5
8x3dx=8x3dx=8x44=2x4\int 8x^3 dx = 8 \int x^3 dx = 8 \cdot \frac{x^4}{4} = 2x^4
2x2dx=2x2dx=2x33=23x3\int 2x^2 dx = 2 \int x^2 dx = 2 \cdot \frac{x^3}{3} = \frac{2}{3}x^3
5dx=51dx=5x\int 5 dx = 5 \int 1 dx = 5x
したがって、
(10x4+8x3+2x2+5)dx=2x5+2x4+23x3+5x+C\int (-10x^4 + 8x^3 + 2x^2 + 5) dx = -2x^5 + 2x^4 + \frac{2}{3}x^3 + 5x + C

3. 最終的な答え

2x5+2x4+23x3+5x+C-2x^5 + 2x^4 + \frac{2}{3}x^3 + 5x + C

「解析学」の関連問題

定積分 $\int_{4}^{1} \sqrt{x} dx$ を計算します。

定積分積分ルート計算
2025/7/25

関数 $f(x)$ が以下のように定義されているとき、$f(x)$ が実数全体で連続となるように定数 $a$ の値を求めよ。 $f(x) = \begin{cases} \frac{1 - \cos ...

連続性関数の極限ロピタルの定理三角関数
2025/7/25

関数 $f(x)$ が与えられています。 $f(x) = \lim_{n \to \infty} \frac{\tan^{n+1} x}{1 + \tan^n x}$, ただし $0 < x < \...

関数の連続性極限tan関数場合分け
2025/7/25

関数 $y = f(x) = \frac{1}{x+3}$ を考える。$f(x)$ の定義域、逆関数 $f^{-1}(x)$ を求める問題。

関数逆関数三角関数定義域値域三角関数の合成
2025/7/25

関数 $y = f(x) = \frac{1}{2^x - 1}$ の定義域と値域を求める問題です。また、関数 $y = -\log_{\frac{1}{3}}(x+2)$ の逆関数を求める問題です。

関数定義域値域逆関数指数関数対数関数
2025/7/25

$\int_{0}^{3} e^{x} dx$ を計算する問題です。

定積分指数関数積分
2025/7/25

以下の6つの文が正しいかどうかを判定し、正しい場合は①、間違っている場合は②を答える。 (1) $a > 0$ なるすべての実数 $a$ に対し、指数関数 $a^x$ は定義される。 (2) $\sq...

指数関数逆関数扇形実数単調増加定義域
2025/7/25

関数 $f(x)$ が与えられています。 $f(x) = \begin{cases} x & (x \geq 0) \\ -2x + a & (x < 0) \end{cases}$ この関数が実数全...

関数の連続性極限区分関数
2025/7/25

定積分 $\int_{2}^{4} \frac{dx}{x}$ を計算する問題です。

定積分積分対数
2025/7/25

与えられた和 $S = 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 2^2 + \dots + 8 \cdot 2^7$ を計算し、その結果をA. 1793またはB. 2047の中...

級数微分等比数列
2025/7/25