関数 $y = 5x^2 - 2x - 1$ のグラフの接線のうち、直線 $y = 8x + 9$ に平行なものを求める問題です。

解析学微分接線導関数関数のグラフ
2025/4/7

1. 問題の内容

関数 y=5x22x1y = 5x^2 - 2x - 1 のグラフの接線のうち、直線 y=8x+9y = 8x + 9 に平行なものを求める問題です。

2. 解き方の手順

まず、与えられた関数の導関数を求めます。
y=5x22x1y = 5x^2 - 2x - 1
y=ddx(5x22x1)=10x2y' = \frac{d}{dx}(5x^2 - 2x - 1) = 10x - 2
次に、直線 y=8x+9y = 8x + 9 に平行な直線の傾きを考えます。平行な直線の傾きは等しいので、求める接線の傾きは8です。
導関数 yy' が接線の傾きを表すので、y=8y' = 8 となる xx の値を求めます。
10x2=810x - 2 = 8
10x=1010x = 10
x=1x = 1
x=1x=1 のときの yy の値を求めます。
y=5(1)22(1)1=521=2y = 5(1)^2 - 2(1) - 1 = 5 - 2 - 1 = 2
したがって、接点の座標は (1,2)(1, 2) です。
接線の式は、yy1=m(xx1)y - y_1 = m(x - x_1) で表されます。ここで、(x1,y1)=(1,2)(x_1, y_1) = (1, 2) は接点の座標、m=8m = 8 は接線の傾きです。
y2=8(x1)y - 2 = 8(x - 1)
y2=8x8y - 2 = 8x - 8
y=8x6y = 8x - 6

3. 最終的な答え

y=8x6y = 8x - 6

「解析学」の関連問題

関数 $f(x) = \ln(\sqrt{1+x^2} - x) + 1$ が与えられており、$f(a) = 4$ である。また、$f(x) = g(x) + 1$ であり、$g(x)$ が奇関数であ...

関数対数関数奇関数合成関数
2025/7/25

関数 $f(x)$ が以下のように定義されているとき、実数全体で単調減少となるような $a$ の範囲を求める問題です。 $f(x) = \begin{cases} x^2 - 4ax + 1 & (x...

関数の単調性対数関数微分不等式場合分け
2025/7/25

区分関数 $f(x)$ が与えられており、 $f(x) = \begin{cases} 2x^2 - 8ax + 3 & (x \le 1) \\ \log_a x & (x > 1) \end{ca...

微分単調減少対数関数区分関数
2025/7/25

(1) 関数 $f(x) = e^x - \sin(x)$ のマクローリン展開を3次まで求めよ。 (2) (1)で求めたマクローリン展開を$g(x)$とおく。関数$g(x)$の増減、凹凸を調べ、曲線$...

マクローリン展開関数の増減関数の凹凸グラフの概形
2025/7/25

(3) $\int \frac{x+5}{(x-1)(x+2)} dx$ を計算し、$\log$ の形で表された結果の空欄を埋める。 (4) $\lim_{x \to 2} \frac{1}{x-2}...

積分部分分数分解極限ロピタルの定理
2025/7/25

与えられた4つの積分・極限の問題を解き、空欄を埋める問題です。 (1) $\int \frac{dx}{(5x+3)^2} = \frac{\boxed{ア}}{\boxed{イウ}x + \boxe...

積分極限置換積分部分積分ロピタルの定理
2025/7/25

与えられた問題は、極限、級数の和、微分の計算問題です。具体的には、以下の内容を計算します。 * 問題1.1:極限の計算 * (1) $\lim_{x \to 1} \frac{x^3 ...

極限級数微分合成関数の微分積の微分商の微分
2025/7/25

$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$ を求めよ。

極限三角関数テイラー展開
2025/7/25

次の極限を計算する問題です。ここで、$a>0$ です。 $$ \lim_{x \to 0} \frac{\log(x+a) - \log a}{x} $$

極限対数ロピタルの定理
2025/7/25

$\lim_{x \to 0} \frac{a^x - 1}{x}$ (ただし、$a > 0$ かつ $a \neq 1$) を計算します。

極限指数関数対数関数微分ロピタルの定理
2025/7/25