定積分 $3 \int_{-3}^{1} (2x^2 + 3x - 3) \, dx + \int_{-1}^{1} (-6x^2 + 4x - 5) \, dx$ を計算せよ。解析学定積分積分計算2025/4/71. 問題の内容定積分 3∫−31(2x2+3x−3) dx+∫−11(−6x2+4x−5) dx3 \int_{-3}^{1} (2x^2 + 3x - 3) \, dx + \int_{-1}^{1} (-6x^2 + 4x - 5) \, dx3∫−31(2x2+3x−3)dx+∫−11(−6x2+4x−5)dx を計算せよ。2. 解き方の手順まず、それぞれの定積分を計算します。一つ目の定積分:∫−31(2x2+3x−3) dx=[23x3+32x2−3x]−31\int_{-3}^{1} (2x^2 + 3x - 3) \, dx = \left[\frac{2}{3}x^3 + \frac{3}{2}x^2 - 3x\right]_{-3}^{1}∫−31(2x2+3x−3)dx=[32x3+23x2−3x]−31=(23(1)3+32(1)2−3(1))−(23(−3)3+32(−3)2−3(−3))= \left(\frac{2}{3}(1)^3 + \frac{3}{2}(1)^2 - 3(1)\right) - \left(\frac{2}{3}(-3)^3 + \frac{3}{2}(-3)^2 - 3(-3)\right)=(32(1)3+23(1)2−3(1))−(32(−3)3+23(−3)2−3(−3))=(23+32−3)−(23(−27)+32(9)+9)= \left(\frac{2}{3} + \frac{3}{2} - 3\right) - \left(\frac{2}{3}(-27) + \frac{3}{2}(9) + 9\right)=(32+23−3)−(32(−27)+23(9)+9)=(4+9−186)−(−18+272+9)= \left(\frac{4 + 9 - 18}{6}\right) - \left(-18 + \frac{27}{2} + 9\right)=(64+9−18)−(−18+227+9)=(−56)−(−9+272)= \left(-\frac{5}{6}\right) - \left(-9 + \frac{27}{2}\right)=(−65)−(−9+227)=−56−(−18+272)= -\frac{5}{6} - \left(\frac{-18 + 27}{2}\right)=−65−(2−18+27)=−56−92=−56−276=−326=−163= -\frac{5}{6} - \frac{9}{2} = -\frac{5}{6} - \frac{27}{6} = -\frac{32}{6} = -\frac{16}{3}=−65−29=−65−627=−632=−316したがって、3∫−31(2x2+3x−3) dx=3(−163)=−163 \int_{-3}^{1} (2x^2 + 3x - 3) \, dx = 3 \left(-\frac{16}{3}\right) = -163∫−31(2x2+3x−3)dx=3(−316)=−16二つ目の定積分:∫−11(−6x2+4x−5) dx=[−2x3+2x2−5x]−11\int_{-1}^{1} (-6x^2 + 4x - 5) \, dx = \left[-2x^3 + 2x^2 - 5x\right]_{-1}^{1}∫−11(−6x2+4x−5)dx=[−2x3+2x2−5x]−11=(−2(1)3+2(1)2−5(1))−(−2(−1)3+2(−1)2−5(−1))= \left(-2(1)^3 + 2(1)^2 - 5(1)\right) - \left(-2(-1)^3 + 2(-1)^2 - 5(-1)\right)=(−2(1)3+2(1)2−5(1))−(−2(−1)3+2(−1)2−5(−1))=(−2+2−5)−(2+2+5)= (-2 + 2 - 5) - (2 + 2 + 5)=(−2+2−5)−(2+2+5)=−5−9=−14= -5 - 9 = -14=−5−9=−14よって、3∫−31(2x2+3x−3) dx+∫−11(−6x2+4x−5) dx=−16−14=−303 \int_{-3}^{1} (2x^2 + 3x - 3) \, dx + \int_{-1}^{1} (-6x^2 + 4x - 5) \, dx = -16 - 14 = -303∫−31(2x2+3x−3)dx+∫−11(−6x2+4x−5)dx=−16−14=−303. 最終的な答え-30