定積分 $\int_{1}^{2} (6x^2 - 10x + 9) dx - \int_{4}^{2} (6x^2 - 10x + 9) dx$ を計算する問題です。解析学定積分積分計算2025/4/71. 問題の内容定積分 ∫12(6x2−10x+9)dx−∫42(6x2−10x+9)dx\int_{1}^{2} (6x^2 - 10x + 9) dx - \int_{4}^{2} (6x^2 - 10x + 9) dx∫12(6x2−10x+9)dx−∫42(6x2−10x+9)dx を計算する問題です。2. 解き方の手順まず、それぞれの定積分を計算します。∫(6x2−10x+9)dx=6⋅x33−10⋅x22+9x+C=2x3−5x2+9x+C\int (6x^2 - 10x + 9) dx = 6 \cdot \frac{x^3}{3} - 10 \cdot \frac{x^2}{2} + 9x + C = 2x^3 - 5x^2 + 9x + C∫(6x2−10x+9)dx=6⋅3x3−10⋅2x2+9x+C=2x3−5x2+9x+Cよって、∫12(6x2−10x+9)dx=[2x3−5x2+9x]12=(2(23)−5(22)+9(2))−(2(13)−5(12)+9(1))=(16−20+18)−(2−5+9)=14−6=8\int_{1}^{2} (6x^2 - 10x + 9) dx = [2x^3 - 5x^2 + 9x]_{1}^{2} = (2(2^3) - 5(2^2) + 9(2)) - (2(1^3) - 5(1^2) + 9(1)) = (16 - 20 + 18) - (2 - 5 + 9) = 14 - 6 = 8∫12(6x2−10x+9)dx=[2x3−5x2+9x]12=(2(23)−5(22)+9(2))−(2(13)−5(12)+9(1))=(16−20+18)−(2−5+9)=14−6=8次に、∫42(6x2−10x+9)dx=[2x3−5x2+9x]42=(2(23)−5(22)+9(2))−(2(43)−5(42)+9(4))=(16−20+18)−(128−80+36)=14−84=−70\int_{4}^{2} (6x^2 - 10x + 9) dx = [2x^3 - 5x^2 + 9x]_{4}^{2} = (2(2^3) - 5(2^2) + 9(2)) - (2(4^3) - 5(4^2) + 9(4)) = (16 - 20 + 18) - (128 - 80 + 36) = 14 - 84 = -70∫42(6x2−10x+9)dx=[2x3−5x2+9x]42=(2(23)−5(22)+9(2))−(2(43)−5(42)+9(4))=(16−20+18)−(128−80+36)=14−84=−70したがって、求める値は∫12(6x2−10x+9)dx−∫42(6x2−10x+9)dx=8−(−70)=8+70=78\int_{1}^{2} (6x^2 - 10x + 9) dx - \int_{4}^{2} (6x^2 - 10x + 9) dx = 8 - (-70) = 8 + 70 = 78∫12(6x2−10x+9)dx−∫42(6x2−10x+9)dx=8−(−70)=8+70=78または、∫12(6x2−10x+9)dx−∫42(6x2−10x+9)dx=∫12(6x2−10x+9)dx+∫24(6x2−10x+9)dx=∫14(6x2−10x+9)dx\int_{1}^{2} (6x^2 - 10x + 9) dx - \int_{4}^{2} (6x^2 - 10x + 9) dx = \int_{1}^{2} (6x^2 - 10x + 9) dx + \int_{2}^{4} (6x^2 - 10x + 9) dx = \int_{1}^{4} (6x^2 - 10x + 9) dx∫12(6x2−10x+9)dx−∫42(6x2−10x+9)dx=∫12(6x2−10x+9)dx+∫24(6x2−10x+9)dx=∫14(6x2−10x+9)dx∫14(6x2−10x+9)dx=[2x3−5x2+9x]14=(2(43)−5(42)+9(4))−(2(13)−5(12)+9(1))=(128−80+36)−(2−5+9)=84−6=78\int_{1}^{4} (6x^2 - 10x + 9) dx = [2x^3 - 5x^2 + 9x]_{1}^{4} = (2(4^3) - 5(4^2) + 9(4)) - (2(1^3) - 5(1^2) + 9(1)) = (128 - 80 + 36) - (2 - 5 + 9) = 84 - 6 = 78∫14(6x2−10x+9)dx=[2x3−5x2+9x]14=(2(43)−5(42)+9(4))−(2(13)−5(12)+9(1))=(128−80+36)−(2−5+9)=84−6=783. 最終的な答え78