次の定積分を計算します。 $\int_{1}^{2} (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10}) dx$

解析学定積分積分積分計算
2025/4/7

1. 問題の内容

次の定積分を計算します。
12(310x2210x+310)dx\int_{1}^{2} (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10}) dx

2. 解き方の手順

まず、積分を計算します。
(310x2210x+310)dx=310x33210x22+310x+C=110x3110x2+310x+C\int (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10}) dx = \frac{3}{10} \cdot \frac{x^3}{3} - \frac{2}{10} \cdot \frac{x^2}{2} + \frac{3}{10}x + C = \frac{1}{10}x^3 - \frac{1}{10}x^2 + \frac{3}{10}x + C
次に、定積分の範囲である1から2までの値を代入して計算します。
[110x3110x2+310x]12=(110(2)3110(2)2+310(2))(110(1)3110(1)2+310(1))[\frac{1}{10}x^3 - \frac{1}{10}x^2 + \frac{3}{10}x]_1^2 = (\frac{1}{10}(2)^3 - \frac{1}{10}(2)^2 + \frac{3}{10}(2)) - (\frac{1}{10}(1)^3 - \frac{1}{10}(1)^2 + \frac{3}{10}(1))
=(810410+610)(110110+310)= (\frac{8}{10} - \frac{4}{10} + \frac{6}{10}) - (\frac{1}{10} - \frac{1}{10} + \frac{3}{10})
=(1010)(310)=1310=710= (\frac{10}{10}) - (\frac{3}{10}) = 1 - \frac{3}{10} = \frac{7}{10}

3. 最終的な答え

710\frac{7}{10}

「解析学」の関連問題

区分関数 $f(x)$ が与えられており、 $f(x) = \begin{cases} 2x^2 - 8ax + 3 & (x \le 1) \\ \log_a x & (x > 1) \end{ca...

微分単調減少対数関数区分関数
2025/7/25

(1) 関数 $f(x) = e^x - \sin(x)$ のマクローリン展開を3次まで求めよ。 (2) (1)で求めたマクローリン展開を$g(x)$とおく。関数$g(x)$の増減、凹凸を調べ、曲線$...

マクローリン展開関数の増減関数の凹凸グラフの概形
2025/7/25

(3) $\int \frac{x+5}{(x-1)(x+2)} dx$ を計算し、$\log$ の形で表された結果の空欄を埋める。 (4) $\lim_{x \to 2} \frac{1}{x-2}...

積分部分分数分解極限ロピタルの定理
2025/7/25

与えられた4つの積分・極限の問題を解き、空欄を埋める問題です。 (1) $\int \frac{dx}{(5x+3)^2} = \frac{\boxed{ア}}{\boxed{イウ}x + \boxe...

積分極限置換積分部分積分ロピタルの定理
2025/7/25

与えられた問題は、極限、級数の和、微分の計算問題です。具体的には、以下の内容を計算します。 * 問題1.1:極限の計算 * (1) $\lim_{x \to 1} \frac{x^3 ...

極限級数微分合成関数の微分積の微分商の微分
2025/7/25

$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$ を求めよ。

極限三角関数テイラー展開
2025/7/25

次の極限を計算する問題です。ここで、$a>0$ です。 $$ \lim_{x \to 0} \frac{\log(x+a) - \log a}{x} $$

極限対数ロピタルの定理
2025/7/25

$\lim_{x \to 0} \frac{a^x - 1}{x}$ (ただし、$a > 0$ かつ $a \neq 1$) を計算します。

極限指数関数対数関数微分ロピタルの定理
2025/7/25

次の不定積分を求めよ。ただし、数値は半角数字で入力すること。 $\int \frac{\sin x}{3-3\cos x -2\sin^2 x} dx$ の不定積分を求め、 $\log|\frac{\...

不定積分三角関数置換積分部分分数分解
2025/7/25

不定積分 $\int \frac{\cos x}{5 - \cos 2x - 6 \sin x} dx$ を求めよ。結果は $\frac{1}{ア} \log \left| \frac{イ - \si...

積分不定積分三角関数部分分数分解置換積分
2025/7/25