与えられた2次方程式を解く問題です。具体的には、以下の8個の2次方程式を解く必要があります。 (1) $x^2 - 8x + 15 = 0$ (2) $x^2 - 7x - 8 = 0$ (3) $x^2 + 14x + 49 = 0$ (4) $(x+8)^2 - 7 = 0$ (5) $(x-1)^2 - 25 = 0$ (6) $(x+1)(x-3) = 5$ (7) $x^2 + x - 1 = 0$ (8) $3x^2 - 8x + 2 = 0$

代数学二次方程式因数分解解の公式
2025/4/7

1. 問題の内容

与えられた2次方程式を解く問題です。具体的には、以下の8個の2次方程式を解く必要があります。
(1) x28x+15=0x^2 - 8x + 15 = 0
(2) x27x8=0x^2 - 7x - 8 = 0
(3) x2+14x+49=0x^2 + 14x + 49 = 0
(4) (x+8)27=0(x+8)^2 - 7 = 0
(5) (x1)225=0(x-1)^2 - 25 = 0
(6) (x+1)(x3)=5(x+1)(x-3) = 5
(7) x2+x1=0x^2 + x - 1 = 0
(8) 3x28x+2=03x^2 - 8x + 2 = 0

2. 解き方の手順

(1) x28x+15=0x^2 - 8x + 15 = 0
因数分解すると、(x3)(x5)=0(x-3)(x-5) = 0。よって、x=3,5x = 3, 5
(2) x27x8=0x^2 - 7x - 8 = 0
因数分解すると、(x8)(x+1)=0(x-8)(x+1) = 0。よって、x=8,1x = 8, -1
(3) x2+14x+49=0x^2 + 14x + 49 = 0
因数分解すると、(x+7)2=0(x+7)^2 = 0。よって、x=7x = -7
(4) (x+8)27=0(x+8)^2 - 7 = 0
(x+8)2=7(x+8)^2 = 7
x+8=±7x+8 = \pm \sqrt{7}
x=8±7x = -8 \pm \sqrt{7}
(5) (x1)225=0(x-1)^2 - 25 = 0
(x1)2=25(x-1)^2 = 25
x1=±5x-1 = \pm 5
x=1±5x = 1 \pm 5
よって、x=6,4x = 6, -4
(6) (x+1)(x3)=5(x+1)(x-3) = 5
x23x+x3=5x^2 - 3x + x - 3 = 5
x22x8=0x^2 - 2x - 8 = 0
因数分解すると、(x4)(x+2)=0(x-4)(x+2) = 0
よって、x=4,2x = 4, -2
(7) x2+x1=0x^2 + x - 1 = 0
解の公式を用いると、x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=1±124(1)(1)2(1)x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)}
x=1±1+42x = \frac{-1 \pm \sqrt{1+4}}{2}
x=1±52x = \frac{-1 \pm \sqrt{5}}{2}
(8) 3x28x+2=03x^2 - 8x + 2 = 0
解の公式を用いると、x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=8±(8)24(3)(2)2(3)x = \frac{8 \pm \sqrt{(-8)^2 - 4(3)(2)}}{2(3)}
x=8±64246x = \frac{8 \pm \sqrt{64 - 24}}{6}
x=8±406x = \frac{8 \pm \sqrt{40}}{6}
x=8±2106x = \frac{8 \pm 2\sqrt{10}}{6}
x=4±103x = \frac{4 \pm \sqrt{10}}{3}

3. 最終的な答え

(1) x=3,5x = 3, 5
(2) x=8,1x = 8, -1
(3) x=7x = -7
(4) x=8±7x = -8 \pm \sqrt{7}
(5) x=6,4x = 6, -4
(6) x=4,2x = 4, -2
(7) x=1±52x = \frac{-1 \pm \sqrt{5}}{2}
(8) x=4±103x = \frac{4 \pm \sqrt{10}}{3}

「代数学」の関連問題

関数 $y = -2x + 5$ の $-3 < x \le 3$ における値域、最大値、最小値を求める問題です。最大値、最小値は選択肢の中から選び、なければ「なし」を選びます。

一次関数値域最大値最小値不等式
2025/6/13

2次関数 $f(x) = 5x^2 + 2x - 1$ について、$f(1)$、$f(-1)$、$f(a+1)$ の値を求めよ。

二次関数関数の値式の計算
2025/6/13

次の連立方程式を加減法で解く問題です。 $\begin{cases} 4x + y = 14 \\ 2x + y = 8 \end{cases}$

連立方程式加減法一次方程式
2025/6/13

与えられた7つの行列の行列式を計算する問題です。

行列式線形代数行列余因子展開
2025/6/13

問題は、$\sqrt{x+4} - \sqrt{x-1} = 1$ という方程式を解くことです。

方程式平方根解の検証
2025/6/13

与えられた方程式は、 $2 + \sqrt[3]{3b - 2} = 6$ です。この方程式を解いて、$b$ の値を求めます。

方程式立方根一次方程式
2025/6/13

2次方程式 $x^2 - 7x - 1 = 0$ の2つの解を $\alpha$, $\beta$ とするとき、次の2数を解とする2次方程式をそれぞれ1つ作成する。 (1) $\alpha-2$, $...

二次方程式解と係数の関係解の変換
2025/6/13

3つの行列が与えられ、$A = \begin{pmatrix} 1 & 7 & 3 \\ 2 & 0 & 5 \end{pmatrix}$、$B = \begin{pmatrix} 1 & 4 & 1...

行列行列の計算行列の積行列のスカラー倍行列の累乗
2025/6/13

$\log_3 2 \cdot \log_2 27$ を計算する問題です。

対数底の変換公式計算
2025/6/13

2次方程式 $2x^2 + 4x + 3 = 0$ の2つの解を $\alpha, \beta$ とするとき、以下の式の値を求める問題です。 (1) $\alpha^2 + \beta^2$ (2) ...

二次方程式解と係数の関係式の計算
2025/6/13