$x = \frac{2}{\sqrt{5}+\sqrt{3}}$、 $y = \frac{2}{\sqrt{5}-\sqrt{3}}$ のとき、以下の値を求めよ。 (1) $x+y$ (2) $xy$ (3) $x^2+y^2$代数学式の計算有理化平方根代数2025/4/81. 問題の内容x=25+3x = \frac{2}{\sqrt{5}+\sqrt{3}}x=5+32、 y=25−3y = \frac{2}{\sqrt{5}-\sqrt{3}}y=5−32 のとき、以下の値を求めよ。(1) x+yx+yx+y(2) xyxyxy(3) x2+y2x^2+y^2x2+y22. 解き方の手順まず、xxxとyyyの分母を有理化する。x=25+3=2(5−3)(5+3)(5−3)=2(5−3)5−3=2(5−3)2=5−3x = \frac{2}{\sqrt{5}+\sqrt{3}} = \frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} = \frac{2(\sqrt{5}-\sqrt{3})}{5-3} = \frac{2(\sqrt{5}-\sqrt{3})}{2} = \sqrt{5}-\sqrt{3}x=5+32=(5+3)(5−3)2(5−3)=5−32(5−3)=22(5−3)=5−3y=25−3=2(5+3)(5−3)(5+3)=2(5+3)5−3=2(5+3)2=5+3y = \frac{2}{\sqrt{5}-\sqrt{3}} = \frac{2(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})} = \frac{2(\sqrt{5}+\sqrt{3})}{5-3} = \frac{2(\sqrt{5}+\sqrt{3})}{2} = \sqrt{5}+\sqrt{3}y=5−32=(5−3)(5+3)2(5+3)=5−32(5+3)=22(5+3)=5+3(1) x+y=(5−3)+(5+3)=25x+y = (\sqrt{5}-\sqrt{3}) + (\sqrt{5}+\sqrt{3}) = 2\sqrt{5}x+y=(5−3)+(5+3)=25(2) xy=(5−3)(5+3)=5−3=2xy = (\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3}) = 5 - 3 = 2xy=(5−3)(5+3)=5−3=2(3) x2+y2=(x+y)2−2xy=(25)2−2(2)=4(5)−4=20−4=16x^2+y^2 = (x+y)^2 - 2xy = (2\sqrt{5})^2 - 2(2) = 4(5) - 4 = 20 - 4 = 16x2+y2=(x+y)2−2xy=(25)2−2(2)=4(5)−4=20−4=163. 最終的な答え(1) x+y=25x+y = 2\sqrt{5}x+y=25(2) xy=2xy = 2xy=2(3) x2+y2=16x^2+y^2 = 16x2+y2=16