$\sin 0$ の値を求めます。

解析学三角関数sin単位円
2025/4/8

1. 問題の内容

sin0\sin 0 の値を求めます。

2. 解き方の手順

単位円を考えます。
角度0の点は、単位円上で(1, 0)の位置にあります。
sinθ\sin \theta は、単位円上の点のy座標に対応します。
したがって、sin0\sin 0 は、(1, 0)のy座標である0に等しくなります。

3. 最終的な答え

0

「解析学」の関連問題

与えられた2つの極限を、ロピタルの定理を用いて求める問題です。 (1) $\lim_{x \to 0} \frac{1 - e^{-x^2}}{1 - \cos 3x}$ (2) $\lim_{x \...

極限ロピタルの定理微分対数関数
2025/7/31

次の関数を微分する問題です。 (1) $y = \sqrt{x^3}$ (2) $y = \frac{4}{\sqrt[3]{x^2}}$ (3) $y = 4\sqrt[3]{x^4} + \fra...

微分関数の微分べき乗の微分
2025/7/31

以下の極限を求める問題です。 $\lim_{n \to \infty} \frac{1}{2} (1 + (-1)^n)$

極限数列収束振動
2025/7/31

与えられた数列 $a_n$ が収束するかどうかを調べ、収束する場合はその極限値を求める問題です。ここでは、問題番号 (8) の数列 $a_n = \frac{4n-1}{2\sqrt{n}-1}$ に...

数列極限収束発散
2025/7/31

以下の3つの関数を微分する問題です。 (1) $y = -4x^3 + 3x^{-2} + 2$ (2) $y = 2x^{\frac{1}{2}} - 3x^{-\frac{4}{3}}$ (3) ...

微分関数の微分べき乗関数
2025/7/31

関数 $f(x) = 3x^2 - 4x + 1$ について、 (1) 微分 $f'(x)$ を求める。 (2) 微分係数 $f'(-1)$, $f'(-2)$, $f'(-3)$ を求める。

微分導関数微分係数多項式
2025/7/31

与えられた3つの極限を計算します。 (4) $\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$ (5) $\lim_{h \to 0} \frac{2h - 3h^2}{h}...

極限関数の極限代入法約分
2025/7/31

与えられた3つの極限を計算します。 (1) $\lim_{h\to 0}(-2+5h+3h^2)$ (2) $\lim_{x\to -1}(3-x-2x^2)$ (3) $\lim_{t\to 3}\...

極限関数の極限多項式分数式
2025/7/31

与えられた3つの二変数関数について、極値を求める問題です。 (1) $h(x,y) = 3x^2 - 5xy + 3y^2 - x - y$ (2) $h(x,y) = -x^2 + xy - y^2...

多変数関数極値偏微分ヘッセ行列
2025/7/31

関数 $f(x) = -2x^2 + x + 3$ について、以下の区間における平均変化率を求めます。 (1) $x$ が $-2$ から $2$ まで変化するとき (2) $x$ が $-2$ から...

関数平均変化率二次関数
2025/7/31