$\tan \frac{\pi}{12}$ の値を加法定理を用いて求める問題です。問題文の指示から $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$ を利用します。

解析学三角関数加法定理tan有理化
2025/4/8

1. 問題の内容

tanπ12\tan \frac{\pi}{12} の値を加法定理を用いて求める問題です。問題文の指示から π12=π3π4\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4} を利用します。

2. 解き方の手順

タンジェントの加法定理は以下の通りです。
tan(αβ)=tanαtanβ1+tanαtanβ\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}
α=π3\alpha = \frac{\pi}{3}, β=π4\beta = \frac{\pi}{4} とおくと、tanα=tanπ3=3\tan \alpha = \tan \frac{\pi}{3} = \sqrt{3}tanβ=tanπ4=1\tan \beta = \tan \frac{\pi}{4} = 1 となります。
これらを加法定理に代入すると、
tanπ12=tan(π3π4)=tanπ3tanπ41+tanπ3tanπ4=311+31=311+3\tan \frac{\pi}{12} = \tan(\frac{\pi}{3} - \frac{\pi}{4}) = \frac{\tan \frac{\pi}{3} - \tan \frac{\pi}{4}}{1 + \tan \frac{\pi}{3} \tan \frac{\pi}{4}} = \frac{\sqrt{3} - 1}{1 + \sqrt{3} \cdot 1} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}}
分母を有理化するために、分子と分母に 131 - \sqrt{3} を掛けます。
311+3=(31)(13)(1+3)(13)=331+313=2342=23\frac{\sqrt{3} - 1}{1 + \sqrt{3}} = \frac{(\sqrt{3} - 1)(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{\sqrt{3} - 3 - 1 + \sqrt{3}}{1 - 3} = \frac{2\sqrt{3} - 4}{-2} = 2 - \sqrt{3}

3. 最終的な答え

232 - \sqrt{3}

「解析学」の関連問題

直線 $y = mx$ と放物線 $y = 3x - x^2$ で囲まれる図形の面積を $S_1$ とする。また、放物線 $y = 3x - x^2$ と $x$ 軸で囲まれる図形の面積を $S_2$...

積分面積放物線直線
2025/8/1

C上の点 $(t, f(t))$ における接線の方程式を求める問題です。 ただし、$f(t) = t^3 - t$ であり、$f'(t) = 3t^2 - 1$ であることが与えられています。 最終的...

接線微分導関数方程式
2025/8/1

次の極限を計算します。 $\lim_{x \to 0} \frac{\log(1 - 3x + 2x^2) + 3x}{x^2}$ ## 解き方の手順 1. ロピタルの定理を適用します。$x \to...

極限ロピタルの定理テイラー展開
2025/8/1

## 問題

極限ロピタルの定理テイラー展開
2025/8/1

与えられた4つの極限値を計算します。 (5) $\lim_{x \to \infty} \frac{5^x}{x^4}$ (6) $\lim_{x \to 0} \frac{x^2}{e^x - e^...

極限指数関数ロピタルの定理
2025/8/1

a) スカラー関数 $\phi = 4x^2z + y^2z^3$ のラプラシアン $\Delta \phi$ を求める。 b) 全微分 $dz = \nabla f \cdot d\mathbf{r...

偏微分ラプラシアン全微分勾配ベクトル
2025/8/1

a) スカラー関数 $\phi = 4x^2z + y^2z^3$ の勾配 $\nabla \phi$ を求める。 b) 全微分 $dz$ が $dz = \nabla f \cdot dr$ で与え...

勾配偏微分全微分ベクトル解析
2025/8/1

次の4つの極限値を求める問題です。 (1) $\lim_{x\to\infty} \frac{\log x}{\sqrt[3]{x}}$ (2) $\lim_{x\to\infty} \frac{e^...

極限ロピタルの定理有理化
2025/8/1

関数 $y = (\log_2 \frac{4}{x})(\log_2 x - 1)$ について、$\frac{1}{2} \le x \le 4$ の範囲で、$t = \log_2 x$ とおいたと...

対数関数二次関数最大値最小値関数のグラフ
2025/8/1

関数 $y = \log_3(3x+9)$ のグラフが、関数 $y = \log_3 x$ のグラフを $x$ 軸方向にどれだけ、また $y$ 軸方向にどれだけ平行移動したものか、さらに、与えられた関...

対数関数グラフ平行移動交点関数の変形
2025/8/1