点Pが線分ABをどのような比に内分するかを答える問題です。図から線分APの長さと線分PBの長さの比を読み取り、空欄を埋めます。

幾何学線分の内分幾何
2025/4/8

1. 問題の内容

点Pが線分ABをどのような比に内分するかを答える問題です。図から線分APの長さと線分PBの長さの比を読み取り、空欄を埋めます。

2. 解き方の手順

図を見ると、線分APの長さは2、線分PBの長さは3であることがわかります。
したがって、点Pは線分ABを2:3に内分します。

3. 最終的な答え

2:3

「幾何学」の関連問題

あおばさんの新しい家の場所を作図によって求める問題です。新しい家の場所は、A駅、B市役所からの距離が等しく、C中学校からの距離が最も近い場所であるという条件を満たします。A駅、B市役所、C中学校はそれ...

作図垂直二等分線距離平面幾何
2025/6/21

楕円 $\frac{x^2}{3} + \frac{y^2}{4} = 1$ と直線 $y = -3x + k$ の共有点の個数が、定数 $k$ の値によってどのように変わるかを調べる問題です。

楕円直線共有点判別式
2025/6/21

点A(-2, 0)からの距離と点B(1, 0)からの距離の比が2:1である点Pの軌跡を求める。

軌跡距離
2025/6/21

点Q(0, 0)からの距離と点A(6, 0)からの距離の比が1:2である点Pの軌跡を求める。

軌跡座標平面
2025/6/21

画像の問題は以下の通りです。 11. 与えられた点を通り、与えられた直線に平行な直線 $l$ の方程式を求める。 12. 与えられた点を通り、与えられた直線に垂直な直線 $l$ の方程式を求める。 1...

直線の方程式平行垂直点と直線の距離
2025/6/21

点$(-1, 2)$を通り、与えられた直線に平行な直線と垂直な直線の方程式を求める問題です。直線は2つ与えられています。 (1) $y = -2x + 1$ (2) $2x - 3y - 5 = 0$

直線方程式平行垂直傾き
2025/6/21

点 $(-2, 5)$ を通り、直線 $3x + 5y + 1 = 0$ に垂直な直線の方程式を求めます。

直線方程式垂直距離
2025/6/21

3点 $(-3, 4)$, $(4, 5)$, $(1, -4)$ を通る円の方程式を求める問題です。

円の方程式座標平面
2025/6/21

与えられた8つの直線の中から、互いに平行な直線と、互いに垂直な直線の組み合わせを答える。

直線平行垂直傾き一次関数
2025/6/21

2点A(6, -1)とB(4, 7)に対して、線分ABを以下の比に内分または外分する点の座標をそれぞれ求めます。 (1) 中点M (2) 5:3に内分する点P (3) 5:3に外分する点Q (4) 3...

座標平面線分内分点外分点
2025/6/21