$\lim_{n\to\infty}(\sqrt{n^2+4n} - n)$を求める。

解析学極限数列式変形ルート
2025/4/8

1. 問題の内容

limn(n2+4nn)\lim_{n\to\infty}(\sqrt{n^2+4n} - n)を求める。

2. 解き方の手順

まず、n2+4nn\sqrt{n^2+4n} - nn2+4n+nn2+4n+n\frac{\sqrt{n^2+4n} + n}{\sqrt{n^2+4n} + n}を掛けて式変形する。
limn(n2+4nn)=limn(n2+4nn)(n2+4n+n)n2+4n+n\lim_{n\to\infty}(\sqrt{n^2+4n} - n) = \lim_{n\to\infty} \frac{(\sqrt{n^2+4n} - n)(\sqrt{n^2+4n} + n)}{\sqrt{n^2+4n} + n}
分子を展開すると、
(n2+4nn)(n2+4n+n)=(n2+4n)n2=4n(\sqrt{n^2+4n} - n)(\sqrt{n^2+4n} + n) = (n^2+4n) - n^2 = 4n
よって、
limn4nn2+4n+n\lim_{n\to\infty} \frac{4n}{\sqrt{n^2+4n} + n}
ここで、分母分子をnnで割る。
limn4n2+4nn2+1=limn41+4n+1\lim_{n\to\infty} \frac{4}{\sqrt{\frac{n^2+4n}{n^2}} + 1} = \lim_{n\to\infty} \frac{4}{\sqrt{1+\frac{4}{n}} + 1}
nn\to\inftyのとき、4n0\frac{4}{n} \to 0であるから、
limn41+4n+1=41+0+1=41+1=42=2\lim_{n\to\infty} \frac{4}{\sqrt{1+\frac{4}{n}} + 1} = \frac{4}{\sqrt{1+0} + 1} = \frac{4}{1+1} = \frac{4}{2} = 2

3. 最終的な答え

2

「解析学」の関連問題

$0 \le x \le \pi$ のとき、$\sqrt{3} \sin x + \cos x = \sqrt{2}$ を満たす $x$ の値を求める問題です。

三角関数三角関数の合成方程式解の公式
2025/7/25

$0 \le \theta < 2\pi$ のとき、関数 $y = \cos 2\theta + 2\sqrt{3}\sin\theta$ の最大値と最小値を求め、そのときの $\theta$ の値を...

三角関数最大値最小値微分平方完成
2025/7/25

次の3つの定積分を計算する問題です。 (1) $\int_{0}^{1} \frac{x-1}{(2-x)^{2}} dx$ (2) $\int_{1}^{2} x \sqrt{2-x} dx$ (3...

定積分積分計算置換積分部分分数分解
2025/7/25

関数 $f(x) = \ln(\sqrt{1+x^2} - x) + 1$ が与えられており、$f(a) = 4$ である。また、$f(x) = g(x) + 1$ であり、$g(x)$ が奇関数であ...

関数対数関数奇関数合成関数
2025/7/25

関数 $f(x)$ が以下のように定義されているとき、実数全体で単調減少となるような $a$ の範囲を求める問題です。 $f(x) = \begin{cases} x^2 - 4ax + 1 & (x...

関数の単調性対数関数微分不等式場合分け
2025/7/25

区分関数 $f(x)$ が与えられており、 $f(x) = \begin{cases} 2x^2 - 8ax + 3 & (x \le 1) \\ \log_a x & (x > 1) \end{ca...

微分単調減少対数関数区分関数
2025/7/25

(1) 関数 $f(x) = e^x - \sin(x)$ のマクローリン展開を3次まで求めよ。 (2) (1)で求めたマクローリン展開を$g(x)$とおく。関数$g(x)$の増減、凹凸を調べ、曲線$...

マクローリン展開関数の増減関数の凹凸グラフの概形
2025/7/25

(3) $\int \frac{x+5}{(x-1)(x+2)} dx$ を計算し、$\log$ の形で表された結果の空欄を埋める。 (4) $\lim_{x \to 2} \frac{1}{x-2}...

積分部分分数分解極限ロピタルの定理
2025/7/25

与えられた4つの積分・極限の問題を解き、空欄を埋める問題です。 (1) $\int \frac{dx}{(5x+3)^2} = \frac{\boxed{ア}}{\boxed{イウ}x + \boxe...

積分極限置換積分部分積分ロピタルの定理
2025/7/25

与えられた問題は、極限、級数の和、微分の計算問題です。具体的には、以下の内容を計算します。 * 問題1.1:極限の計算 * (1) $\lim_{x \to 1} \frac{x^3 ...

極限級数微分合成関数の微分積の微分商の微分
2025/7/25