関数 $y = ax^2$ について、以下の条件を満たすときの $a$ の値を求めます。 (1) $x=3$ のとき $y=3$ (2) $x=-2$ のとき $y=1$

代数学二次関数方程式代入
2025/4/8

1. 問題の内容

関数 y=ax2y = ax^2 について、以下の条件を満たすときの aa の値を求めます。
(1) x=3x=3 のとき y=3y=3
(2) x=2x=-2 のとき y=1y=1

2. 解き方の手順

(1)
y=ax2y = ax^2x=3x=3, y=3y=3 を代入します。
3=a(3)23 = a(3)^2
3=9a3 = 9a
両辺を 9 で割って aa を求めます。
a=39=13a = \frac{3}{9} = \frac{1}{3}
(2)
y=ax2y = ax^2x=2x=-2, y=1y=1 を代入します。
1=a(2)21 = a(-2)^2
1=4a1 = 4a
両辺を 4 で割って aa を求めます。
a=14a = \frac{1}{4}

3. 最終的な答え

(1) a=13a = \frac{1}{3}
(2) a=14a = \frac{1}{4}

「代数学」の関連問題

関数 $y = x^2$ のグラフ上に点 $A(-1, a)$ と $B(2, b)$ があるとき、次の問いに答えます。 (1) $a$ と $b$ の値をそれぞれ求めます。 (2) 2点 $A$, ...

二次関数グラフ直線の式座標平面面積
2025/4/20

与えられた数式 $\frac{3}{\sqrt{6}}(\sqrt{2} - \sqrt{12}) + \sqrt{50}$ を簡略化し、$a + b\sqrt{c}$ の形で表したときの $a$, ...

根号式の計算簡略化
2025/4/20

問題は、関数 $y=x^2$ のグラフ上に2点A(-1,a)とB(2,b)があるとき、以下の問いに答えるものです。 (1) a, b の値をそれぞれ求めよ。 (2) 2点A, Bを通る直線の式を求めよ...

二次関数グラフ直線の式連立方程式面積
2025/4/20

与えられた2つの関数 (1) $y = 2x - 5$ と (2) $y = \frac{x+3}{x-2}$ の逆関数を求める問題です。(2) については、$x>2$ という条件が与えられています。

関数逆関数分数関数
2025/4/20

$x = 1 + \sqrt{3}$ のとき、$x^2 - 4x + 3$ の値を求めよ。

二次式式の値平方根因数分解
2025/4/20

与えられた式 $(9a^2 - 9a - 28)(9a^2 + 9a + 2)$ を展開して簡単にしてください。

展開因数分解多項式
2025/4/20

与えられた数式 $(a^4 + 4a^2)^2$ を展開し、整理した結果を求める。

式の展開多項式因数分解累乗
2025/4/20

周の長さが $a$ cmの長方形があり、縦の長さが $b$ cmのとき、横の長さを $x$ cmとする。$x$を$a$、$b$を用いた式で表す。

長方形周の長さ式変形一次方程式
2025/4/20

長方形の周の長さが $c$ cm、縦の長さが $b$ cm のとき、横の長さ $a$ cm を $a, b, c$ を用いた式で表す問題です。

長方形周の長さ式変形一次方程式
2025/4/20

縦の長さが $m$、横の長さが $x$ の長方形Aと、縦の長さが $n$、横の長さが $y$ の長方形Bがあります。 (1) A, Bそれぞれの面積を $x, y, m, n$ の中から必要な文字のみ...

面積長方形文字式方程式
2025/4/20