直角三角形ABCにおいて、辺ACの長さが2、辺BCの長さが3、辺ABの長さが$\sqrt{13}$であるとき、$\sin B$の値を求める。

幾何学三角比直角三角形sin辺の比
2025/4/9

1. 問題の内容

直角三角形ABCにおいて、辺ACの長さが2、辺BCの長さが3、辺ABの長さが13\sqrt{13}であるとき、sinB\sin Bの値を求める。

2. 解き方の手順

sinB\sin Bは、直角三角形において、角Bの対辺の長さを斜辺の長さで割ったものである。
この場合、角Bの対辺はACであり、その長さは2である。斜辺はABであり、その長さは13\sqrt{13}である。
したがって、
sinB=ACAB=213\sin B = \frac{AC}{AB} = \frac{2}{\sqrt{13}}
分母を有理化するために、分子と分母に13\sqrt{13}を掛ける。
sinB=2131313=21313\sin B = \frac{2}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}} = \frac{2\sqrt{13}}{13}

3. 最終的な答え

sinB=21313\sin B = \frac{2\sqrt{13}}{13}

「幾何学」の関連問題

問題は、立方体の6つの面を6種類の色すべてを用いて塗り分ける方法が何通りあるかを求めるものです。

立方体組み合わせ順列回転対称性場合の数
2025/6/22

円の方程式が $(x-a)^2 + (y-b)^2 = r^2$ の形で与えられている場合、中心は $(a, b)$、半径は $r$ です。 円の方程式が $x^2 + y^2 + Ax + ...

位置関係座標半径中心
2025/6/22

放物線 $y = x^2$ と直線 $y = x + 2$ の交点をA, Bとする。点Pは放物線 $y = x^2$ 上を動く点とする。三角形OABと三角形PABの面積が等しくなるような点Pの座標をす...

放物線直線交点面積三角形座標
2025/6/22

2点A(0, -2) と B(0, 2) が与えられたとき、AP^2 + BP^2 = 10 を満たす点Pの軌跡を求める問題です。

軌跡座標平面
2025/6/22

点A(-3, 1)、点B(1, -1) があり、点P(x, y) からA, B までの距離が等しい ($AP = BP$) という条件と、直線 $y = 2x + 2$ 上に点Pがあるという条件が与え...

座標平面距離垂直二等分線直線
2025/6/22

平面上に2点 P($a\cos\theta, a\sin\theta$) と Q($4\cos^3\theta, 4\sin^3\theta$) がある。aは$\theta$に無関係な定数であるとき、...

座標平面三角関数距離パラメータ表示
2025/6/22

2つの円 $C_1: (x-1)^2 + (y-1)^2 = 1$ と $C_2: (x-5)^2 + (y-3)^2 = 1$ の共通接線の方程式をすべて求める。

接線方程式
2025/6/22

座標平面上に円 $C: x^2 + y^2 = 2$ と点 $A(2, 1)$ がある。 (1) 点 $A$ を通り、円 $C$ に接する直線の方程式を求めよ。 (2) 点 $A$ を通る直線が円 $...

接線直線座標平面距離
2025/6/22

三角形ABCにおいて、与えられた辺の長さと角の大きさから、残りの辺の長さと角の大きさを求める問題です。 (1) $a=3$, $B=75^\circ$, $C=60^\circ$ (2) $a=\sq...

三角形正弦定理角度辺の長さ
2025/6/22

三角形ABCにおいて、辺ABを1:2に内分する点をD、辺BCを3:1に内分する点をEとする。線分CDの中点をFとするとき、3点A, F, Eが一直線上にあることを証明する。

ベクトル内分点一次独立空間ベクトル
2025/6/22