三角形ABCにおいて、$b=3$, $c=2$, $A=60^\circ$のとき、$a=\sqrt{\boxed{}}$の$\boxed{}$に入る値を求める問題です。

幾何学余弦定理三角形辺の長さ角度
2025/4/9

1. 問題の内容

三角形ABCにおいて、b=3b=3, c=2c=2, A=60A=60^\circのとき、a=a=\sqrt{\boxed{}}\boxed{}に入る値を求める問題です。

2. 解き方の手順

余弦定理を用いて、aaの値を求めます。余弦定理は以下の通りです。
a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc\cos A
与えられた値を代入すると、
a2=32+22232cos60a^2 = 3^2 + 2^2 - 2 \cdot 3 \cdot 2 \cdot \cos 60^\circ
cos60=12\cos 60^\circ = \frac{1}{2}なので、
a2=9+423212a^2 = 9 + 4 - 2 \cdot 3 \cdot 2 \cdot \frac{1}{2}
a2=136a^2 = 13 - 6
a2=7a^2 = 7
したがって、a=7a = \sqrt{7}となります。

3. 最終的な答え

7

「幾何学」の関連問題

問題2:円に内接する四角形ABCDがあり、対角線の交点をPとします。PA=3, PB=x, PC=4, PD=8-xのとき、xの値を求めます。 問題3:△ABCにおいて、AB=5, BC=4, CA=...

四角形方べきの定理三角形外角の二等分線直角三角形相似
2025/4/13

四角形ABCDの対角線の交点をOとするとき、四角形ABCDがいつでも平行四辺形となる条件を、選択肢の中から番号の小さい順に2つ選ぶ問題です。

平行四辺形四角形対角線図形
2025/4/13

三角形ABCにおいて、以下の2つの条件を満たす点Dを作図によって求める方法を、選択肢から選ぶ問題です。 (1) 点Dは辺BC上にあり、$ \angle BAD = \angle CAD $ である。 ...

三角形作図角の二等分線垂直二等分線
2025/4/13

4点A, B, C, Dが円周上にあり、線分BDが円の直径であるとき、∠xの大きさを求める問題です。∠BAD = $48^\circ$ が与えられています。

円周角直径三角形の内角の和角度
2025/4/13

正四角錐 O-ABCD があり、底面は一辺が 6cm の正方形である。OA = 9cm である。 (1) AE の長さを求める。 (2) 正四角錐の体積を求める。

正四角錐体積三平方の定理空間図形
2025/4/13

与えられた円錐について、以下の2つの問いに答えます。 (1) 円錐の展開図として正しいものを選択肢から選び、番号を答えます。 (2) 円錐の表面積を求めます。

円錐表面積展開図おうぎ形
2025/4/13

直方体の対角線の長さを求めなさい。直方体の各辺の長さは、縦4cm、横3cm、高さ2cmです。答えは $\sqrt{キク}$ の形で求めます。

三平方の定理直方体対角線
2025/4/13

直角三角形ABCにおいて、点PがAを出発し、辺AB上をBを通り、辺BC上を通ってCまで、秒速1cmで移動する。点PがAを出発してからx秒後の△APCの面積をy cm$^2$とする。 (1) 点PがAを...

三角形面積グラフ一次関数
2025/4/13

長方形ABCDがあり、AB=14cm, BC=20cmである。点PはAを出発し、長方形ABCDの辺上を毎秒1cmで動き、A→B→C→Dと動く。図2は、点PがAを出発してからの時間x秒後の三角形APDの...

長方形面積移動グラフ
2025/4/13

一辺の長さが9cmの正方形ABCDがある。頂点Cが辺AD上にくるように線分MNで折り、AMとBCの交点をEとする。 (1) ∠CND = 40°のとき、∠CNMの大きさを求めなさい。 (2) △AEC...

正方形折り返し相似角度
2025/4/13