円の外部の点Pから円に引いた2本の直線が円と交わっています。PA = 3cm, AB = 3cm, CD = 7cm, PC = x cm のとき、x の値を求めなさい。

幾何学方べきの定理二次方程式長さ
2025/4/9

1. 問題の内容

円の外部の点Pから円に引いた2本の直線が円と交わっています。PA = 3cm, AB = 3cm, CD = 7cm, PC = x cm のとき、x の値を求めなさい。

2. 解き方の手順

これは方べきの定理を利用する問題です。点Pから円に引いた2本の直線と円との交点をそれぞれA, BとC, Dとすると、方べきの定理より、
PA×PB=PC×PDPA \times PB = PC \times PD
が成り立ちます。
図から、PA = 3 cm, AB = 3 cmなので、PB = PA + AB = 3 + 3 = 6 cm です。また、PC = x cm, CD = 7 cmなので、PD = PC + CD = x + 7 cm です。
したがって、
3×6=x×(x+7)3 \times 6 = x \times (x + 7)
18=x2+7x18 = x^2 + 7x
x2+7x18=0x^2 + 7x - 18 = 0
この2次方程式を解きます。因数分解すると、
(x+9)(x2)=0(x + 9)(x - 2) = 0
x=9x = -9 または x=2x = 2
x は長さを表すので、正の値である必要があります。したがって、x=2x = 2 となります。

3. 最終的な答え

2 cm

「幾何学」の関連問題

半径が3、弧の長さが4である扇形について、(1)中心角の大きさを求め、(2)面積を求める。また、$\sin\theta + \cos\theta = \frac{2}{3}$ のとき、(1) $\si...

扇形弧の長さ面積三角関数
2025/6/22

$\vec{OA} = \vec{a}$, $\vec{OB} = \vec{b}$, $\vec{OP} = 3\vec{a} - \vec{b}$, $\vec{OQ} = \vec{a} + \...

ベクトル平行ベクトル計算
2025/6/22

直線 $l: y = \frac{2}{3}x + \frac{4}{3}$ があり、直線 $l$ 上の $x$ 座標が4である点Pを通る、傾きが2である直線 $m$ がある。直線 $l, m$ と ...

直線座標平面三角形の面積一次関数
2025/6/22

座標平面上の2つの円 $C_1: x^2 + y^2 = 1$ と $C_2: x^2 + (y-a)^2 = \frac{a^2}{4}$ が異なる2点で交わり、その交点のx座標が正である点をPとす...

接線交点座標平面
2025/6/22

問題は、二等辺三角形ABCにおいて、AB上に点Dをとり、Dを通りBCに平行な直線とACとの交点をEとする。BCの中点をFとし、点D,Fと点E,Fを結ぶ。 (1) △BFDと△CFEが合同であることを証...

三角形二等辺三角形相似合同面積
2025/6/22

円周上に点A, B, C, D, Eがあり、弧AB=弧BC、弧AE=弧EDである。∠CAD=30°であるとき、∠BAC = αを求めよ。

円周角角度図形
2025/6/22

5本の平行線と、それらに交わる4本の平行線があります。これらの平行線によって作られる平行四辺形は、全部で何個あるかを求める問題です。

組み合わせ平行四辺形図形
2025/6/22

円の中に四角形ABDEがあり、円の中心をOとする。角ABCは50°である。線分ODとBCは平行である。角α(角BAE)の大きさを求める問題である。

四角形円周角の定理平行線二等辺三角形
2025/6/22

円に内接する四角形 $ABCD$ があり、$\angle{DQC} = 30^\circ$、$\angle{BPC} = 34^\circ$ である。$\angle{DAB} = \alpha$ を求...

四角形円周角の定理角度
2025/6/22

$0 < \alpha < \frac{\pi}{2}$ のとき、$\tan \frac{\alpha}{4} = \frac{1}{5}$ である。このとき、$\alpha$ と $\frac{\p...

三角関数tan大小比較角度
2025/6/22