異なる7個の玉を机の上に円形に並べる方法は何通りあるかを求める問題です。

その他円順列順列組み合わせ場合の数
2025/3/13

1. 問題の内容

異なる7個の玉を机の上に円形に並べる方法は何通りあるかを求める問題です。

2. 解き方の手順

円順列の問題です。
n個の異なるものを円形に並べる方法は、(n-1)!通りです。
今回は、7個の異なる玉を円形に並べるので、n=7n = 7 となります。
したがって、並べ方は (71)!(7-1)! 通りです。
(71)!=6!(7-1)! = 6!
6!=6×5×4×3×2×1=7206! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720

3. 最終的な答え

720通り

「その他」の関連問題

グラフから1986年~89年の成長量をおおよそで読み取り、選択肢の中から最も近いものを選ぶ問題です。グラフは、わが国の森林の成長量と伐採量を表しています。成長量は左軸(百万 $m^3$)、伐採量は右軸...

グラフ読解データ分析森林成長量近似値
2025/7/6

与えられた式 $(1-\sin\theta)(1+\sin\theta) - \frac{1}{1+\tan^2\theta}$ の値を求める問題です。途中の空欄を埋めながら計算を進めます。

三角関数相互関係式の計算数式処理
2025/7/5

全体集合$U = \{x | 1 \le x \le 10, xは整数\}$の部分集合$A = \{1, 2, 3, 5, 7\}$, $B = \{2, 3, 8, 10\}$について、以下の集合を...

集合集合演算部分集合和集合共通部分補集合
2025/7/4

数列 $0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, \dots$ について、以下の2つの問いに答えます。 (1) 10 が最初に出現するのは第何項か。 (2) 第 290 項を求...

数列規則性Σ等差数列の和漸化式
2025/7/4

B判の紙のサイズに関する問題です。具体的には、B0判の紙の面積が1.5m²であり、長い辺を半分に切ることでB1判、B2判、B3判、B4判…とサイズが小さくなっていくという定義が与えられています。そして...

面積比比率サイズ近似製図
2025/7/3

次の等式を証明する問題です。 $\frac{sin(\alpha - \beta)}{sin(\alpha + \beta)} = \frac{tan \alpha - tan \beta}{tan ...

三角関数加法定理恒等式証明
2025/7/3

$\sin \theta = \frac{5}{7}$のとき、$\theta$が鋭角である場合と鈍角である場合について、それぞれ$\cos \theta$と$\tan \theta$の値を求める。

三角関数三角比sincostan角度鋭角鈍角
2025/7/3

サイコロが与えられており、向かい合う面の目の和が7になるという条件の下で、指定された回転操作を行った後の上面の目の数を求める問題です。具体的には、 (1) アの方向に180度回転させた後、イの方向に1...

サイコロ空間認識回転
2025/7/3

問題は、$2^{100}$が何桁の整数であるかと、$30^{-20}$を小数で表したとき、小数第何位に初めて0でない数字が現れるかを求めるものです。ただし、$\log_{10} 2 = 0.3010$...

対数指数桁数小数
2025/7/3

問題1は、自然数 $m$ に関する条件が、別の条件を満たすための必要条件、十分条件、必要十分条件のどれに当てはまるかを問う問題です。 問題2は、命題「$a+b$ は無理数 $\Rightarrow a...

論理必要条件十分条件必要十分条件命題対偶真偽
2025/7/2