与えられた積分を計算します。 $$ \int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx $$解析学積分部分積分三角関数2025/4/101. 問題の内容与えられた積分を計算します。∫x2+72(xsinx+9cosx)2dx \int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx ∫(xsinx+9cosx)2x2+72dx2. 解き方の手順まず、xsinx+9cosxx \sin x + 9 \cos xxsinx+9cosx を微分することを考えます。ddx(xsinx+9cosx)=sinx+xcosx−9sinx=xcosx−8sinx \frac{d}{dx}(x \sin x + 9 \cos x) = \sin x + x \cos x - 9 \sin x = x \cos x - 8 \sin x dxd(xsinx+9cosx)=sinx+xcosx−9sinx=xcosx−8sinx被積分関数を部分分数分解することを考えます。被積分関数はx2+72(xsinx+9cosx)2 \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} (xsinx+9cosx)2x2+72部分積分の公式∫u′vdx=uv−∫uv′dx \int u' v dx = uv - \int u v' dx ∫u′vdx=uv−∫uv′dxを利用することを考えます。まず、ddx(cosxxsinx+9cosx)=−sinx(xsinx+9cosx)−cosx(xcosx−8sinx)(xsinx+9cosx)2 \frac{d}{dx} \left( \frac{\cos x}{x \sin x + 9 \cos x} \right) = \frac{-\sin x (x \sin x + 9 \cos x) - \cos x (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} dxd(xsinx+9cosxcosx)=(xsinx+9cosx)2−sinx(xsinx+9cosx)−cosx(xcosx−8sinx)=−xsin2x−9sinxcosx−xcos2x+8sinxcosx(xsinx+9cosx)2=−x−sinxcosx(xsinx+9cosx)2 = \frac{-x \sin^2 x - 9 \sin x \cos x - x \cos^2 x + 8 \sin x \cos x}{(x \sin x + 9 \cos x)^2} = \frac{-x - \sin x \cos x}{(x \sin x + 9 \cos x)^2} =(xsinx+9cosx)2−xsin2x−9sinxcosx−xcos2x+8sinxcosx=(xsinx+9cosx)2−x−sinxcosxここで、ddx(sinxxsinx+9cosx)=cosx(xsinx+9cosx)−sinx(xcosx−8sinx)(xsinx+9cosx)2 \frac{d}{dx} \left( \frac{\sin x}{x \sin x + 9 \cos x} \right) = \frac{\cos x (x \sin x + 9 \cos x) - \sin x (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} dxd(xsinx+9cosxsinx)=(xsinx+9cosx)2cosx(xsinx+9cosx)−sinx(xcosx−8sinx)=xsinxcosx+9cos2x−xsinxcosx+8sin2x(xsinx+9cosx)2=9cos2x+8sin2x(xsinx+9cosx)2 = \frac{x \sin x \cos x + 9 \cos^2 x - x \sin x \cos x + 8 \sin^2 x}{(x \sin x + 9 \cos x)^2} = \frac{9 \cos^2 x + 8 \sin^2 x}{(x \sin x + 9 \cos x)^2} =(xsinx+9cosx)2xsinxcosx+9cos2x−xsinxcosx+8sin2x=(xsinx+9cosx)29cos2x+8sin2xddx(cosxxsinx+9cosx)=−x−sinxcosx(xsinx+9cosx)2 \frac{d}{dx} \left( \frac{\cos x}{x \sin x + 9 \cos x} \right) = \frac{-x - \sin x \cos x}{(x \sin x + 9 \cos x)^2} dxd(xsinx+9cosxcosx)=(xsinx+9cosx)2−x−sinxcosxx2+72(xsinx+9cosx)2=x2+81−9(xsinx+9cosx)2=x2sin2x+x2cos2x+81cos2x+81sin2x−9sin2x−9cos2x(xsinx+9cosx)2 \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} = \frac{x^2 + 81 - 9}{(x \sin x + 9 \cos x)^2} = \frac{x^2 \sin^2 x + x^2 \cos^2 x + 81 \cos^2 x + 81 \sin^2 x - 9 \sin^2 x - 9 \cos^2 x}{(x \sin x + 9 \cos x)^2} (xsinx+9cosx)2x2+72=(xsinx+9cosx)2x2+81−9=(xsinx+9cosx)2x2sin2x+x2cos2x+81cos2x+81sin2x−9sin2x−9cos2x=(xsinx+9cosx)2−18xsinxcosx−81cos2x+9cos2x+9xsinxcosx−x2sin2x−81sin2x+9sin2x(xsinx+9cosx)2 = \frac{(x \sin x + 9 \cos x)^2 - 18 x \sin x \cos x - 81 \cos^2 x + 9 \cos^2 x + 9 x \sin x \cos x - x^2 \sin^2 x - 81 \sin^2 x + 9 \sin^2 x}{(x \sin x + 9 \cos x)^2} =(xsinx+9cosx)2(xsinx+9cosx)2−18xsinxcosx−81cos2x+9cos2x+9xsinxcosx−x2sin2x−81sin2x+9sin2x=x2+72(xsinx+9cosx)2=(xcosx−8sinx)(ax+b)xsinx+9cosx = \frac{x^2+72}{(x \sin x + 9 \cos x)^2} = \frac{(x \cos x - 8 \sin x) (ax+b)}{x \sin x + 9 \cos x} =(xsinx+9cosx)2x2+72=xsinx+9cosx(xcosx−8sinx)(ax+b)∫x2+72(xsinx+9cosx)2dx=∫xcosx−8sinxxsinx+9cosxxsinx+9cosxxcosx−8sinx1cosxdx \int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = \int \frac{x \cos x - 8 \sin x}{x \sin x + 9 \cos x} \frac{x \sin x + 9 \cos x}{x \cos x - 8 \sin x} \frac{1}{\cos x} dx ∫(xsinx+9cosx)2x2+72dx=∫xsinx+9cosxxcosx−8sinxxcosx−8sinxxsinx+9cosxcosx1dx∫x2+72(xsinx+9cosx)2dx=9sinx−xcosxxsinx+9cosx \int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = \frac{9 \sin x - x \cos x}{x \sin x + 9 \cos x} ∫(xsinx+9cosx)2x2+72dx=xsinx+9cosx9sinx−xcosxddx(9sinx−xcosxxsinx+9cosx)=(9cosx−cosx+xsinx)(xsinx+9cosx)−(9sinx−xcosx)(xcosx−8sinx)(xsinx+9cosx)2 \frac{d}{dx} \left( \frac{9 \sin x - x \cos x}{x \sin x + 9 \cos x} \right) = \frac{(9 \cos x - \cos x + x \sin x) (x \sin x + 9 \cos x) - (9 \sin x - x \cos x) (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} dxd(xsinx+9cosx9sinx−xcosx)=(xsinx+9cosx)2(9cosx−cosx+xsinx)(xsinx+9cosx)−(9sinx−xcosx)(xcosx−8sinx)=8xsin2x+72cos2x−x2cosx+9x−9(9cosx−8cosx(xsinx+9cosx)2=8cosx(xsinx+9cosx)+xcosx(xsinx+9cosx)2 = \frac{8 x \sin^2 x + 72 \cos^2 x - x^2 \cos x + 9 x - 9 (9 \cos x - 8 \cos x}{(x \sin x + 9 \cos x)^2} = \frac{8 \cos x (x \sin x + 9 \cos x) + x \cos x}{(x \sin x + 9 \cos x)^2} =(xsinx+9cosx)28xsin2x+72cos2x−x2cosx+9x−9(9cosx−8cosx=(xsinx+9cosx)28cosx(xsinx+9cosx)+xcosx∫x2+72(xsinx+9cosx)2dx=−xcosx+9sinxxsinx+9cosx+C \int \frac{x^2+72}{(x \sin x + 9 \cos x)^2}dx = \frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x} + C∫(xsinx+9cosx)2x2+72dx=xsinx+9cosx−xcosx+9sinx+C3. 最終的な答え−xcosx+9sinxxsinx+9cosx+C \frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x} + C xsinx+9cosx−xcosx+9sinx+C