定積分 $\int_{0}^{5} (\frac{1}{4}x^4 - \frac{5}{3}x^3) dx$ を計算します。解析学定積分積分計算多項式2025/4/101. 問題の内容定積分 ∫05(14x4−53x3)dx\int_{0}^{5} (\frac{1}{4}x^4 - \frac{5}{3}x^3) dx∫05(41x4−35x3)dx を計算します。2. 解き方の手順まず、被積分関数を積分します。∫(14x4−53x3)dx=14∫x4dx−53∫x3dx\int (\frac{1}{4}x^4 - \frac{5}{3}x^3) dx = \frac{1}{4} \int x^4 dx - \frac{5}{3} \int x^3 dx∫(41x4−35x3)dx=41∫x4dx−35∫x3dx∫x4dx=x55+C1\int x^4 dx = \frac{x^5}{5} + C_1∫x4dx=5x5+C1∫x3dx=x44+C2\int x^3 dx = \frac{x^4}{4} + C_2∫x3dx=4x4+C2したがって、不定積分は以下のようになります。14(x55)−53(x44)+C=x520−5x412+C\frac{1}{4} (\frac{x^5}{5}) - \frac{5}{3} (\frac{x^4}{4}) + C = \frac{x^5}{20} - \frac{5x^4}{12} + C41(5x5)−35(4x4)+C=20x5−125x4+C次に、定積分の値を計算します。∫05(14x4−53x3)dx=[x520−5x412]05\int_{0}^{5} (\frac{1}{4}x^4 - \frac{5}{3}x^3) dx = [\frac{x^5}{20} - \frac{5x^4}{12}]_{0}^{5}∫05(41x4−35x3)dx=[20x5−125x4]05=(5520−5(54)12)−(0520−5(04)12)= (\frac{5^5}{20} - \frac{5(5^4)}{12}) - (\frac{0^5}{20} - \frac{5(0^4)}{12})=(2055−125(54))−(2005−125(04))=5520−5512−0= \frac{5^5}{20} - \frac{5^5}{12} - 0=2055−1255−0=55(120−112)= 5^5 (\frac{1}{20} - \frac{1}{12})=55(201−121)=55(3−560)= 5^5 (\frac{3 - 5}{60})=55(603−5)=55(−260)= 5^5 (\frac{-2}{60})=55(60−2)=55(−130)= 5^5 (\frac{-1}{30})=55(30−1)=−312530=−6256= \frac{-3125}{30} = \frac{-625}{6}=30−3125=6−6253. 最終的な答え−6256\frac{-625}{6}6−625