正方形ABCDがあり、辺CD上に点Eがある。頂点Aから線分BEに下ろした垂線とBEとの交点をF、頂点Cから線分BEに下ろした垂線とBEとの交点をGとする。このとき、$\triangle ABF \equiv \triangle BCG$であることを証明する。

幾何学合同証明正方形直角三角形図形
2025/4/10

1. 問題の内容

正方形ABCDがあり、辺CD上に点Eがある。頂点Aから線分BEに下ろした垂線とBEとの交点をF、頂点Cから線分BEに下ろした垂線とBEとの交点をGとする。このとき、ABFBCG\triangle ABF \equiv \triangle BCGであることを証明する。

2. 解き方の手順

まず、ABF\triangle ABFBCG\triangle BCGにおいて、正方形の性質からAB=BCAB=BCが成り立つことを示す。
次に、AFB=CGB=90\angle AFB = \angle CGB = 90^\circを示す。
ABF\angle ABFBCG\angle BCGの関係を明らかにするために、ABF=90CBG=BCG\angle ABF = 90^\circ - \angle CBG = \angle BCGを示す。
以上の3点から、ABF\triangle ABFBCG\triangle BCGが合同であることを示す。
(証明)
ABF\triangle ABFBCG\triangle BCGにおいて
正方形ABCDより、
AB=BCAB = BC    …①
AFBEAF \perp BECGBECG \perp BEより、
AFB=CGB=90\angle AFB = \angle CGB = 90^\circ …②
ABC=90\angle ABC = 90^\circより、
ABF+CBG=90\angle ABF + \angle CBG = 90^\circ
BCG+CBG=90\angle BCG + \angle CBG = 90^\circ
よって、
ABF=90CBG\angle ABF = 90^\circ - \angle CBG
BCG=90CBG\angle BCG = 90^\circ - \angle CBG
したがって、
ABF=BCG\angle ABF = \angle BCG …③
①、②、③より、
直角三角形において、斜辺と1つの鋭角がそれぞれ等しいので、
ABFBCG\triangle ABF \equiv \triangle BCG

3. 最終的な答え

ABFBCG\triangle ABF \equiv \triangle BCG

「幾何学」の関連問題

(1) $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ を示す。 (2) $\cos 54^{\circ}$ の値を求める。 (3) 頂点と重心との距離が...

三角関数加法定理正五角形面積
2025/4/14

三角形ABCにおいて、$AB + AC = \sqrt{3}BC$ が成立するとき、$\cos A$ の取りうる値の範囲を求める。

余弦定理三角形三角比相加相乗平均
2025/4/14

2直線 $y=3x$ と $y=\frac{1}{2}x$ のなす角 $\theta$ を求める問題です。ただし、$0 \le \theta \le \frac{\pi}{2}$ とします。

角度直線三角関数tan
2025/4/14

(1) 正弦の加法定理を用いて、$\sin\alpha + \sin\beta = 2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}}$...

三角関数加法定理三角比三角形
2025/4/14

(1) 正弦の和に関する公式 $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta...

三角関数加法定理三角形三角比
2025/4/14

半径 $r$ mの円形の土地の周囲に、幅 $a$ mの道がある。この道の面積を $S$ m$^2$、道の真ん中を通る円周の長さを $l$ mとするとき、$S=al$ であることを示す問題です。

面積円周証明
2025/4/14

(1) 座標空間において、点A(3, 4, 5), B(4, 2, 3)に対して、原点Oから点Aまでの距離OAと、点Aから点Bまでの距離ABを求める問題。 (2) 3x3のマスに2, 3, 4, 6,...

距離空間ベクトル算数パズル論理的思考
2025/4/14

直径10cmの円に内接する正六角形について、中心角(あ)の角度、内角(い)の角度、そして正六角形の辺の長さをそれぞれ求める問題です。

正六角形角度辺の長さ図形
2025/4/14

問題は、空欄を埋める問題が3つと、図形の名前を答える問題が3つあります。 空欄を埋める問題は、図形の定義や性質に関する知識を問うものです。 図形の名前を答える問題は、与えられた図形がそれぞれ何という図...

図形多角形正多角形
2025/4/14

長方形の公園に、芝生の部分と土の部分があります。それぞれの問題について、芝生と土のどちらが広いかを判断します。 (1) 芝生の部分を長方形に変えたときの、芝生と土の面積をそれぞれ求めて、どちらが広いか...

面積長方形平行四辺形比較
2025/4/14