三角形ABCにおいて、$b=7$, $c=4$, $A=135^\circ$のとき、この三角形の面積Sを求めよ。

幾何学三角形面積正弦三角比
2025/3/13

1. 問題の内容

三角形ABCにおいて、b=7b=7, c=4c=4, A=135A=135^\circのとき、この三角形の面積Sを求めよ。

2. 解き方の手順

三角形の面積を求める公式
S=12bcsinAS = \frac{1}{2}bc\sin A
を使う。
この問題では、b=7b=7, c=4c=4, A=135A=135^\circであるから、
S=12×7×4×sin135S = \frac{1}{2} \times 7 \times 4 \times \sin 135^\circ
sin135=sin(18045)=sin45=22\sin 135^\circ = \sin (180^\circ - 45^\circ) = \sin 45^\circ = \frac{\sqrt{2}}{2}
したがって、
S=12×7×4×22=72S = \frac{1}{2} \times 7 \times 4 \times \frac{\sqrt{2}}{2} = 7\sqrt{2}

3. 最終的な答え

S=72S = 7\sqrt{2}

「幾何学」の関連問題

小さな噴水の放物線 $C_1$ および $C_2$ と、大きな噴水の放物線 $C_3$ に関する問題です。 $C_1$ は点 $(-\frac{5}{2}, 0)$ から出て $(0, 1)$ を通り...

放物線二次関数方程式頂点対称性
2025/6/10

直線 $l: 2x - y - 3 = 0$ に関して、点 $P(1, 4)$ と対称な点 $Q$ の座標を求める。選択肢の中から一つ選ぶ問題です。

座標平面直線点対称連立方程式
2025/6/10

2直線 $y=\frac{1}{2}x+1$ と $y=3x-1$ のなす角のうち、鋭角 $\theta$ を選択肢の中から選びなさい。

直線角度三角関数tan加法定理
2025/6/10

三角形OABにおいて、辺OAを3:2に内分する点をC、辺ABを2:1に内分する点をDとする。線分BCと線分ODの交点をPとする。 (1) ベクトルODをベクトルOAとベクトルOBで表す。 (2) ベク...

ベクトル内分線分の交点空間ベクトル
2025/6/10

$\triangle OAB$ において、辺 $OA$ を $3:2$ に内分する点を $C$、辺 $AB$ を $2:1$ に内分する点を $D$ とする。線分 $BC$ と線分 $OD$ の交点を...

ベクトル内分点線分の交点ベクトル方程式
2025/6/10

四角形ABCDの4辺の長さが決まっているが、形が一意に定まらない。対角線BDの長さ$x$を指定したとき、頂点Cが直線BDに関してAと反対側にある場合と、同じ側にある場合の2通りが存在するような、$x$...

四角形三角形幾何不等式三角関数角度
2025/6/10

太郎さんと花子さんが、四角形ABCDについて話しています。$AB=5$, $BC=2$, $CD=3$, $DA=3$ のとき、四角形ABCDが円に内接するときの$\angle BAD$の大きさ、対角...

円に内接する四角形余弦定理角度対角線
2025/6/10

問題12:2点A(-2, 6), B(7, 5)を通る直線を媒介変数tを使って表す。 問題13:点(3, 1)を通り、ベクトルn = (2, 1)に垂直な直線の方程式を求める。

ベクトル直線の方程式媒介変数平面ベクトル
2025/6/10

ベクトル $\vec{a} = (2, -1, 3)$ と $\vec{b} = (0, -2, 1)$ の両方に垂直で、大きさが $3\sqrt{5}$ のベクトルを求める。

ベクトル外積ベクトルの大きさ空間ベクトル
2025/6/10

3点A(2, 2, 0), B(2, -3, √5), C(1, -1, 0)について、∠ACB = θとする。 (1) ベクトル$\overrightarrow{CA}$, $\overrighta...

ベクトル空間ベクトル内積三角形の面積
2025/6/10