$\sin\theta - \cos\theta = \frac{2}{3}$ のとき、$\sin\theta\cos\theta$ と $\sin^3\theta - \cos^3\theta$ の値を求めよ。解析学三角関数sincos恒等式2025/4/111. 問題の内容sinθ−cosθ=23\sin\theta - \cos\theta = \frac{2}{3}sinθ−cosθ=32 のとき、sinθcosθ\sin\theta\cos\thetasinθcosθ と sin3θ−cos3θ\sin^3\theta - \cos^3\thetasin3θ−cos3θ の値を求めよ。2. 解き方の手順まず、sinθcosθ\sin\theta\cos\thetasinθcosθ の値を求めます。(sinθ−cosθ)2=(23)2(\sin\theta - \cos\theta)^2 = (\frac{2}{3})^2(sinθ−cosθ)2=(32)2 を計算します。sin2θ−2sinθcosθ+cos2θ=49\sin^2\theta - 2\sin\theta\cos\theta + \cos^2\theta = \frac{4}{9}sin2θ−2sinθcosθ+cos2θ=94ここで、sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1sin2θ+cos2θ=1 なので、1−2sinθcosθ=491 - 2\sin\theta\cos\theta = \frac{4}{9}1−2sinθcosθ=942sinθcosθ=1−49=592\sin\theta\cos\theta = 1 - \frac{4}{9} = \frac{5}{9}2sinθcosθ=1−94=95sinθcosθ=518\sin\theta\cos\theta = \frac{5}{18}sinθcosθ=185次に、sin3θ−cos3θ\sin^3\theta - \cos^3\thetasin3θ−cos3θ の値を求めます。sin3θ−cos3θ=(sinθ−cosθ)(sin2θ+sinθcosθ+cos2θ)\sin^3\theta - \cos^3\theta = (\sin\theta - \cos\theta)(\sin^2\theta + \sin\theta\cos\theta + \cos^2\theta)sin3θ−cos3θ=(sinθ−cosθ)(sin2θ+sinθcosθ+cos2θ)=(sinθ−cosθ)(1+sinθcosθ)= (\sin\theta - \cos\theta)(1 + \sin\theta\cos\theta)=(sinθ−cosθ)(1+sinθcosθ)sinθ−cosθ=23\sin\theta - \cos\theta = \frac{2}{3}sinθ−cosθ=32 であり、sinθcosθ=518\sin\theta\cos\theta = \frac{5}{18}sinθcosθ=185 なので、sin3θ−cos3θ=23(1+518)=23(18+518)=23(2318)=2×233×18=4654=2327\sin^3\theta - \cos^3\theta = \frac{2}{3}(1 + \frac{5}{18}) = \frac{2}{3}(\frac{18+5}{18}) = \frac{2}{3}(\frac{23}{18}) = \frac{2 \times 23}{3 \times 18} = \frac{46}{54} = \frac{23}{27}sin3θ−cos3θ=32(1+185)=32(1818+5)=32(1823)=3×182×23=5446=27233. 最終的な答えsinθcosθ=518\sin\theta\cos\theta = \frac{5}{18}sinθcosθ=185sin3θ−cos3θ=2327\sin^3\theta - \cos^3\theta = \frac{23}{27}sin3θ−cos3θ=2723