正六角形ABCDEFの頂点Aに〇、頂点Fに●がある。大小2つのサイコロを1回投げ、大きいサイコロの出た目の数だけ〇を左回りに頂点から頂点へ移動させ、小さいサイコロの出た目の数だけ●を左回りに頂点から頂点へ移動させる。具体的な移動の例も示されている。

幾何学正六角形移動確率
2025/4/11

1. 問題の内容

正六角形ABCDEFの頂点Aに〇、頂点Fに●がある。大小2つのサイコロを1回投げ、大きいサイコロの出た目の数だけ〇を左回りに頂点から頂点へ移動させ、小さいサイコロの出た目の数だけ●を左回りに頂点から頂点へ移動させる。具体的な移動の例も示されている。

2. 解き方の手順

問題文が不完全なので、問題文全体がわかるように質問してください。
しかし、問題文から読み取れるルールと例を整理すると、以下のようになります。
* サイコロは大小2つを使う
* 大きいサイコロの出た目の数だけ〇を左回りに移動
* 小さいサイコロの出た目の数だけ●を左回りに移動
* 正六角形の頂点を移動する
例として、
* 大きいサイコロの出た目が2、小さいサイコロの出た目が1のとき、〇はA→B→Cに移動、●はF→Aに移動
* 大きいサイコロの出た目が2、小さいサイコロの出た目が3のとき、〇はA→B→Cに移動、●はF→A→B→Cに移動

3. 最終的な答え

問題文が不完全のため、答えを出すことができません。問題文全体がわかるように質問してください。

「幾何学」の関連問題

$\triangle OAB$ において、辺 $OA$ を $2:3$ に内分する点を $C$、辺 $OB$ を $1:3$ に内分する点を $D$、辺 $AB$ の中点を $E$ とする。線分 $B...

ベクトル内分線分の交点一次独立
2025/4/15

2つの円 $C_1: x^2+y^2+8x-6y+21=0$、$C_2: x^2+y^2=k$ と直線 $l: x+2y-3=0$ について、以下の問いに答える。ただし、$k$ は正の定数とする。 (...

座標平面円の方程式交点接線
2025/4/15

ベクトル $\vec{a}$ と $\vec{b}$ について、$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow |\vec{a} + \vec{b}| = |\v...

ベクトル内積ベクトルの大きさ同値性
2025/4/15

問題は、円の性質、角の二等分線の性質、方べきの定理、メネラウスの定理などを用いて、線分の長さや比、面積を求める問題です。 (1) $\triangle ABC$ において、$AC = 5$, $AB ...

角の二等分線方べきの定理メネラウスの定理三平方の定理相似
2025/4/14

座標平面上の3点 $A(0, 3)$、$B(0, 2)$と $x$ 軸上の点 $P(x, 0)$を考える。$0 \le \angle APB \le \pi$ の条件のもとで、$\angle APB$...

座標平面角度接線
2025/4/14

問題10は、直方体を二つに分けてできた三角柱に関する問題で、以下の2つの問いに答える必要があります。 (1) 辺ABとねじれの位置にある辺をすべて答える。 (2) 面ABCと垂直な面をすべて答える。 ...

空間図形三角柱ねじれの位置円錐体積表面積
2025/4/14

問題8は、合同な二等辺三角形が組み合わされた図形に関する2つの問題です。 (1) $\triangle AOH$ を直線CGを対称の軸として対称移動させたときに重なる三角形を答える。 (2) $\tr...

合同二等辺三角形対称移動回転移動
2025/4/14

三角形ABCにおいて、$AB=26$, $BC=18$, $AC=10$である。角Aの二等分線と辺BCの交点をDとする。このとき、線分BDの長さを求めよ。

三角形角の二等分線角の二等分線の定理相似
2025/4/14

三角形ABCにおいて、$AB=26$, $BC=24$, $AC=10$である。角Aの二等分線と辺BCの交点をDとするとき、$BD:DC$を求めよ。

幾何三角形角の二等分線
2025/4/14

三角形ABCにおいて、$AB = 20$, $BC = 16$, $AC = 12$である。角Aの二等分線と辺BCの交点をDとするとき、線分BDの長さを求めよ。

三角形角の二等分線線分の長さ
2025/4/14