与えられた連立一次方程式を解きます。連立方程式は以下の通りです。 $5x + 2y = 1$ $-x - 4y = 7$

代数学連立一次方程式代入法方程式の解
2025/4/12

1. 問題の内容

与えられた連立一次方程式を解きます。連立方程式は以下の通りです。
5x+2y=15x + 2y = 1
x4y=7-x - 4y = 7

2. 解き方の手順

以下の手順で連立方程式を解きます。
ステップ1:2番目の式を5倍します。
5(x4y)=5(7)5(-x - 4y) = 5(7)
5x20y=35-5x - 20y = 35
ステップ2:ステップ1で得られた式と、1番目の式を足し合わせます。
(5x+2y)+(5x20y)=1+35(5x + 2y) + (-5x - 20y) = 1 + 35
18y=36-18y = 36
ステップ3:ステップ2で得られた式を解いて、yy の値を求めます。
y=3618y = \frac{36}{-18}
y=2y = -2
ステップ4:y=2y = -2 を1番目の式に代入して、xx の値を求めます。
5x+2(2)=15x + 2(-2) = 1
5x4=15x - 4 = 1
5x=55x = 5
x=1x = 1

3. 最終的な答え

x=1x = 1, y=2y = -2

「代数学」の関連問題

(1) 第3項が6、第11項が46である等差数列$\{a_n\}$の一般項を求める。 (2) 初項から第n項までの和を$S_n$とする等比数列$\{b_n\}$において、$S_3 = 9$、$S_6 ...

数列等差数列等比数列シグマ和の公式
2025/4/15

与えられた問題は、以下の4つの小問から構成されています。 (1) 整式 $x^3 + 2x^2 - 17x + 3$ を $x-3$ で割ったときの商と余りを求める問題。 (2) 複素数の計算問題 $...

整式の割り算複素数三角関数ベクトル
2025/4/15

X, Y, Z は 1 から 9 までの整数であり、X > Y > Z を満たします。このとき、以下の条件アとイを使って、Y の値を特定できるかどうかを判断します。 ア: $X = Y + 7$ イ...

不等式整数条件論理
2025/4/15

3つの商店X, Y, Zにおけるある商品の販売価格について、以下の情報が与えられています。 * 販売価格はX > Y > Zの順です。 * 3つの商店の販売価格の平均は176円です。 * ...

不等式方程式平均最大値
2025/4/15

ある地区の運動会で綱引きが行われる。1チームの人数は大人と子供合わせて15人である。 大人の人数は子供の人数の1.5倍以下であり、子供の人数は大人の人数の2倍以下である。このとき、大人と子供の人数の組...

不等式連立方程式整数問題文章問題
2025/4/15

花束を何人かで買う。小さいサイズの花束を買う場合、1人1500円ずつ集めると500円余る。小さいサイズの1.5倍の値段の大きいサイズの花束を買う場合、1人2100円ずつ集めると150円余る。花束を何人...

一次方程式文章問題方程式
2025/4/15

$m$ を定数とするとき、2次方程式 $x^2 + (m+1)x + 1 = 0$ の解の種類を判別せよ。

二次方程式判別式解の判別不等式
2025/4/15

与えられた4つの2次方程式について、判別式を用いて解の種類(異なる2つの実数解、重解、異なる2つの虚数解)を判定する。

二次方程式判別式解の判別
2025/4/15

次の4つの二次方程式を解きます。 (1) $x^2 + 3x + 4 = 0$ (2) $3x^2 - 4x + 2 = 0$ (3) $x^2 + \sqrt{2}x + 1 = 0$ (4) $x...

二次方程式解の公式複素数
2025/4/15

次の2次方程式を解く問題です。 (1) $x^2 = -1$ (2) $x^2 = -8$

二次方程式複素数平方根
2025/4/15