$\sum_{k=1}^{n} (2k-1)(k+3)$ を計算する問題です。代数学シグマ数列展開公式適用2025/4/121. 問題の内容∑k=1n(2k−1)(k+3)\sum_{k=1}^{n} (2k-1)(k+3)∑k=1n(2k−1)(k+3) を計算する問題です。2. 解き方の手順まず、シグマの中身を展開します。(2k−1)(k+3)=2k2+6k−k−3=2k2+5k−3(2k-1)(k+3) = 2k^2 + 6k - k - 3 = 2k^2 + 5k - 3(2k−1)(k+3)=2k2+6k−k−3=2k2+5k−3したがって、求める和は∑k=1n(2k2+5k−3)\sum_{k=1}^{n} (2k^2 + 5k - 3)∑k=1n(2k2+5k−3)シグマを分解すると、2∑k=1nk2+5∑k=1nk−3∑k=1n12 \sum_{k=1}^{n} k^2 + 5 \sum_{k=1}^{n} k - 3 \sum_{k=1}^{n} 12∑k=1nk2+5∑k=1nk−3∑k=1n1∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nこれらの公式を代入すると、2⋅n(n+1)(2n+1)6+5⋅n(n+1)2−3n2 \cdot \frac{n(n+1)(2n+1)}{6} + 5 \cdot \frac{n(n+1)}{2} - 3n2⋅6n(n+1)(2n+1)+5⋅2n(n+1)−3n=n(n+1)(2n+1)3+5n(n+1)2−3n=\frac{n(n+1)(2n+1)}{3} + \frac{5n(n+1)}{2} - 3n=3n(n+1)(2n+1)+25n(n+1)−3n=2n(n+1)(2n+1)+15n(n+1)−18n6= \frac{2n(n+1)(2n+1) + 15n(n+1) - 18n}{6}=62n(n+1)(2n+1)+15n(n+1)−18n=n(2(n+1)(2n+1)+15(n+1)−18)6= \frac{n(2(n+1)(2n+1) + 15(n+1) - 18)}{6}=6n(2(n+1)(2n+1)+15(n+1)−18)=n(2(2n2+3n+1)+15n+15−18)6= \frac{n(2(2n^2 + 3n + 1) + 15n + 15 - 18)}{6}=6n(2(2n2+3n+1)+15n+15−18)=n(4n2+6n+2+15n−3)6= \frac{n(4n^2 + 6n + 2 + 15n - 3)}{6}=6n(4n2+6n+2+15n−3)=n(4n2+21n−1)6= \frac{n(4n^2 + 21n - 1)}{6}=6n(4n2+21n−1)=4n3+21n2−n6= \frac{4n^3 + 21n^2 - n}{6}=64n3+21n2−n3. 最終的な答え4n3+21n2−n6\frac{4n^3 + 21n^2 - n}{6}64n3+21n2−n