$\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$ であることを用いて、$\sin \frac{\pi}{12}$ と $\cos \frac{\pi}{12}$ の値を求めよ。解析学三角関数加法定理sincos角度2025/4/131. 問題の内容π12=π4−π6\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}12π=4π−6π であることを用いて、sinπ12\sin \frac{\pi}{12}sin12π と cosπ12\cos \frac{\pi}{12}cos12π の値を求めよ。2. 解き方の手順sin(α−β)=sinαcosβ−cosαsinβ\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \betasin(α−β)=sinαcosβ−cosαsinβcos(α−β)=cosαcosβ+sinαsinβ\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \betacos(α−β)=cosαcosβ+sinαsinβである。sinπ12=sin(π4−π6)=sinπ4cosπ6−cosπ4sinπ6\sin \frac{\pi}{12} = \sin (\frac{\pi}{4} - \frac{\pi}{6}) = \sin \frac{\pi}{4} \cos \frac{\pi}{6} - \cos \frac{\pi}{4} \sin \frac{\pi}{6}sin12π=sin(4π−6π)=sin4πcos6π−cos4πsin6πcosπ12=cos(π4−π6)=cosπ4cosπ6+sinπ4sinπ6\cos \frac{\pi}{12} = \cos (\frac{\pi}{4} - \frac{\pi}{6}) = \cos \frac{\pi}{4} \cos \frac{\pi}{6} + \sin \frac{\pi}{4} \sin \frac{\pi}{6}cos12π=cos(4π−6π)=cos4πcos6π+sin4πsin6πsinπ4=22\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}sin4π=22cosπ4=22\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}cos4π=22sinπ6=12\sin \frac{\pi}{6} = \frac{1}{2}sin6π=21cosπ6=32\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}cos6π=23sinπ12=22⋅32−22⋅12=6−24\sin \frac{\pi}{12} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}sin12π=22⋅23−22⋅21=46−2cosπ12=22⋅32+22⋅12=6+24\cos \frac{\pi}{12} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}cos12π=22⋅23+22⋅21=46+23. 最終的な答えsinπ12=6−24\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}sin12π=46−2cosπ12=6+24\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}cos12π=46+2