多項式 $A = 4x^2 + xy - 2y^2$, $B = -3x^2 + 3xy - 2y^2$, $C = 2x^2 - xy + y^2$ が与えられたとき、$2(A + B) - 3(B - 2C)$ を計算します。代数学多項式式の計算分配法則2025/3/141. 問題の内容多項式 A=4x2+xy−2y2A = 4x^2 + xy - 2y^2A=4x2+xy−2y2, B=−3x2+3xy−2y2B = -3x^2 + 3xy - 2y^2B=−3x2+3xy−2y2, C=2x2−xy+y2C = 2x^2 - xy + y^2C=2x2−xy+y2 が与えられたとき、2(A+B)−3(B−2C)2(A + B) - 3(B - 2C)2(A+B)−3(B−2C) を計算します。2. 解き方の手順まず、A+BA+BA+BとB−2CB-2CB−2Cを計算します。A+B=(4x2+xy−2y2)+(−3x2+3xy−2y2)=(4−3)x2+(1+3)xy+(−2−2)y2=x2+4xy−4y2A+B = (4x^2 + xy - 2y^2) + (-3x^2 + 3xy - 2y^2) = (4-3)x^2 + (1+3)xy + (-2-2)y^2 = x^2 + 4xy - 4y^2A+B=(4x2+xy−2y2)+(−3x2+3xy−2y2)=(4−3)x2+(1+3)xy+(−2−2)y2=x2+4xy−4y2B−2C=(−3x2+3xy−2y2)−2(2x2−xy+y2)=−3x2+3xy−2y2−4x2+2xy−2y2=(−3−4)x2+(3+2)xy+(−2−2)y2=−7x2+5xy−4y2B - 2C = (-3x^2 + 3xy - 2y^2) - 2(2x^2 - xy + y^2) = -3x^2 + 3xy - 2y^2 - 4x^2 + 2xy - 2y^2 = (-3-4)x^2 + (3+2)xy + (-2-2)y^2 = -7x^2 + 5xy - 4y^2B−2C=(−3x2+3xy−2y2)−2(2x2−xy+y2)=−3x2+3xy−2y2−4x2+2xy−2y2=(−3−4)x2+(3+2)xy+(−2−2)y2=−7x2+5xy−4y2次に、2(A+B)2(A+B)2(A+B)と3(B−2C)3(B-2C)3(B−2C)を計算します。2(A+B)=2(x2+4xy−4y2)=2x2+8xy−8y22(A+B) = 2(x^2 + 4xy - 4y^2) = 2x^2 + 8xy - 8y^22(A+B)=2(x2+4xy−4y2)=2x2+8xy−8y23(B−2C)=3(−7x2+5xy−4y2)=−21x2+15xy−12y23(B-2C) = 3(-7x^2 + 5xy - 4y^2) = -21x^2 + 15xy - 12y^23(B−2C)=3(−7x2+5xy−4y2)=−21x2+15xy−12y2最後に、2(A+B)−3(B−2C)2(A+B) - 3(B-2C)2(A+B)−3(B−2C) を計算します。2(A+B)−3(B−2C)=(2x2+8xy−8y2)−(−21x2+15xy−12y2)=(2+21)x2+(8−15)xy+(−8+12)y2=23x2−7xy+4y22(A+B) - 3(B-2C) = (2x^2 + 8xy - 8y^2) - (-21x^2 + 15xy - 12y^2) = (2+21)x^2 + (8-15)xy + (-8+12)y^2 = 23x^2 - 7xy + 4y^22(A+B)−3(B−2C)=(2x2+8xy−8y2)−(−21x2+15xy−12y2)=(2+21)x2+(8−15)xy+(−8+12)y2=23x2−7xy+4y23. 最終的な答え23x2−7xy+4y223x^2 - 7xy + 4y^223x2−7xy+4y2